Login

Moose
GP: 12 | W: 8 | L: 4 | OTL: 0 | P: 16
GF: 45 | GA: 41 | PP%: 11.48% | PK%: 76.92%
GM : Pascal Verret | Morale : 45 | Team Overall : 63
Next Games #171 vs Condors
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Condors
6-4-2, 14pts
4
FINAL
3 Moose
8-4-0, 16pts
Team Stats
L1StreakW1
2-2-2Home Record3-3-0
4-2-0Away Record5-1-0
5-4-1Last 10 Games7-3-0
3.67Goals Per Game3.75
4.00Goals Against Per Game3.42
15.09%Power Play Percentage11.48%
81.54%Penalty Kill Percentage76.92%
Moose
8-4-0, 16pts
6
FINAL
2 Condors
6-4-2, 14pts
Team Stats
W1StreakL1
3-3-0Home Record2-2-2
5-1-0Away Record4-2-0
7-3-0Last 10 Games5-4-1
3.75Goals Per Game3.67
3.42Goals Against Per Game4.00
11.48%Power Play Percentage15.09%
76.92%Penalty Kill Percentage81.54%
Condors
6-4-2, 14pts
2022-11-27
Moose
8-4-0, 16pts
Team Stats
L1StreakW1
2-2-2Home Record3-3-0
4-2-0Away Record5-1-0
5-4-1Last 10 Games7-3-0
3.67Goals Per Game3.75
4.00Goals Against Per Game3.42
15.09%Power Play Percentage11.48%
81.54%Penalty Kill Percentage76.92%
Moose
8-4-0, 16pts
2022-11-30
Barracuda
3-4-4, 10pts
Team Stats
W1StreakL2
3-3-0Home Record2-3-1
5-1-0Away Record1-1-3
7-3-0Last 10 Games3-4-3
3.75Goals Per Game4.00
3.42Goals Against Per Game4.82
11.48%Power Play Percentage23.73%
76.92%Penalty Kill Percentage87.76%
Griffins
6-5-2, 14pts
2022-12-02
Moose
8-4-0, 16pts
Team Stats
L1StreakW1
2-2-1Home Record3-3-0
4-3-1Away Record5-1-0
4-5-1Last 10 Games7-3-0
4.38Goals Per Game3.75
4.08Goals Against Per Game3.42
14.04%Power Play Percentage11.48%
76.81%Penalty Kill Percentage76.92%
Team Leaders
Goals
Nathan Walker
7
Assists
Dylan Strome
17
Points
Dylan Strome
22
Plus/Minus
Dylan Strome
10
Wins
Brandon Halverson
4
Save Percentage
Filip Gustavsson
0.918

Team Stats
Goals For
45
3.75 GFG
Shots For
419
34.92 Avg
Power Play Percentage
11.5%
7 GF
Offensive Zone Start
40.3%
Goals Against
41
3.42 GAA
Shots Against
386
32.17 Avg
Penalty Kill Percentage
76.9%
12 GA
Defensive Zone Start
36.8%
Team Info

General ManagerPascal Verret
CoachAdams Oates
DivisionThayer-Tutt
ConferenceRobert-Lebel
CaptainNathan Walker
Assistant #1Ludwig Bystrom
Assistant #2


Arena Info

Capacity3,000
Attendance2,798
Season Tickets300


Roster Info

Pro Team34
Farm Team19
Contract Limit53 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Nathan Walker (R) (C)X100.006931727772786977717572647351515048700231850,000$
2Roope Hintz (R)X100.007846757673697469677675677352456238700213975,000$
3Christian Dvorak (R)X100.007742827068687471656874687353455744690211800,000$
4Mathieu Joseph (R)X100.007337707375627474596774696445435848680203950,000$
5Dylan Strome (R)X100.006128786763797473848169525349436748670204950,000$
6Chase De Leo (R)X100.006530817066697167697673516145445748660211750,000$
7Michael McLeod (R)X100.005237738362635682616470637343426448660191500,000$
8Julien Gauthier (R)X100.006129775574626167586973486144425648620201500,000$
9C.J. Smith (R)X100.007342725965636764596565547146495632620234650,000$
10Nick Merkley (R)X100.005735816157666370806862395942425627610204550,000$
11Boris Katchouk (R)X100.006742726364626968625863476342437248600192500,000$
12Jake Leschyshyn (R)X100.007436596075577866565853444740407932570182500,000$
13Ludwig Bystrom (R) (A)X100.007323787874727677497158775861474148710231975,000$
14Roman JosiX100.0073308671747379725370757365645233277102711,000,000$
15Matthew Benning (R)X100.006722796866716166457061725549494548660231750,000$
16Nelson Nogier (R)X100.006641746466676260386657694543434738640211600,000$
17Josh Mahura (R)X100.005137747254575975266652623841415945600191500,000$
18Urho Vaakanainen (R)X100.005623765957575747285936643840407731560182500,000$
Scratches
1Lane MacDermidX100.007744787675677473667472696869662831710281700,000$
2Vinni Lettieri (R)X100.006539867278777353667656635749484923650222500,000$
3Mitchell Stephens (R)X100.004827907066796549706658614642425927600202500,000$
4Nathan Bastian (R)X100.004941725760726166796561495942445227600201500,000$
5Max Jones (R)X100.006742666570557360466659544441416127590191500,000$
6William Bitten (R)X100.007140616468516964495664505841425943590191500,000$
7Jonah Gadjovich (R)X100.006241595775437064485264415142437028560192500,000$
8Tim Gettinger (R)X100.005629655164595460505862316541416028540191500,000$
9Erik Cernak (R)X94.847735726979786356417264775049446234700202950,000$
10Juuso Valimaki (R)X85.605030667654615977297947674641417336620192500,000$
11Jonathan Kovacevic (R)X100.006133635655635443356137593542444928550201350,000$
TEAM AVERAGE99.33653574676766676655676259574745573763
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Brandon Halverson100.00727772707572727167687348445248700211850,000$
2Filip Gustavsson (R)100.00646774635478795648786445427350630191500,000$
Scratches
1Karel Vejmelka (R)100.00725869787460556271487145475527640212500,000$
2Joey Daccord100.00676665485273735352685344435528600211600,000$
3Daniel Vladar (R)100.00536644675767557065555742436828590203500,000$
TEAM AVERAGE100.0066676565627067626163644544613663
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Adams Oates53568572375954CAN531950,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dylan StromeMoose (Win)C12517221040161726112319.23%323619.74224446000080050.77%32366001.8600000320
2Nathan WalkerMoose (Win)RW127613-2120232058123112.07%1223819.881238480000232145.24%4285001.0913000111
3Roope HintzMoose (Win)LW1258132160211748152910.42%724920.751344450002261047.37%1973001.0423000001
4Christian DvorakMoose (Win)LW11571242016122151523.81%721319.401126400221232043.75%1623101.1201000200
5Mathieu JosephMoose (Win)RW1264109100191129101220.69%521017.56011540000091060.00%2075000.9500000011
6Julien GauthierMoose (Win)RW1223530011651440.00%31199.970000000000000.00%011000.8400000100
7Mirco MuellerJetsD10134040172823794.35%2728028.09112736000035000.00%065000.2800000001
8Nick MerkleyMoose (Win)RW31342201064316.67%0237.7200000000000150.00%200003.4500000001
9Chase De LeoMoose (Win)C12033000107208110.00%21109.1800000000030050.00%4673000.5400000000
10Juuso ValimakiMoose (Win)D7123710017104310.00%310515.0600021400008000.00%006000.5700000010
11Roman JosiMoose (Win)D7123-240101219365.26%1518226.06112234000018000.00%046000.3300000000
12Michael McLeodMoose (Win)C12303-14012113110189.68%214011.70000111101271141.25%8084000.4300000000
13C.J. SmithMoose (Win)LW6123-1007153220.00%0437.33000000000000100.00%101001.3700000010
14Jake LeschyshynMoose (Win)C5022220303110.00%0295.8400000000040040.00%1500001.3700000000
15Lane MacDermidMoose (Win)LW7202-36066861025.00%39613.77000000000100162.50%832000.4200000000
16Nelson NogierMoose (Win)D80221806152100.00%710513.1500000011110000.00%016000.3800000000
17Boris KatchoukMoose (Win)LW11112140100104510.00%0827.520001100001000.00%122000.4800000000
18Ludwig BystromMoose (Win)D120117402221181160.00%2530025.05000548000039000.00%0710000.0700000000
19Matthew BenningMoose (Win)D1210124061714357.14%1423419.55000027000036000.00%016000.0900000010
20Josh MahuraMoose (Win)D1110112041091611.11%414913.5900011300002000.00%055000.1300000000
21Erik CernakMoose (Win)D5000-395764110.00%29018.09000011000011000.00%018000.0000000000
22Urho VaakanainenMoose (Win)D3000020010000.00%1217.040000000000000.00%000000.0000000000
23Mitchell StephensMoose (Win)C2000-100001010.00%0157.62000020000000100.00%200000.0000000000
24Sam ReinhartJetsRW1000-300332040.00%02424.1000013000060050.00%1210000.0000000000
25Nathan BastianMoose (Win)RW2000-200001010.00%0126.090000000002000.00%010000.0000000000
26William BittenMoose (Win)RW9000-320556010.00%0535.990000000001000.00%111000.0000000000
Team Total or Average216436610930111523623337912120711.35%142336915.60711184742813462967448.98%5887988100.6537000775
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Brandon HalversonMoose (Win)74300.8863.584020024211110000.750475001
2Filip GustavssonMoose (Win)54100.9182.53308001315887000.833655011
3Karel VejmelkaMoose (Win)10000.76511.4321004176000.000002000
Team Total or Average138400.8943.367330041386203000.800101212012


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Boris KatchoukMoose (Win)LW191998-01-01Yes206 Lbs6 ft2NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Brandon HalversonMoose (Win)G211996-01-01No203 Lbs6 ft4NoNoNo1Pro & Farm850,000$730,340$0$0$NoLink
C.J. SmithMoose (Win)LW231994-01-01Yes184 Lbs5 ft11NoNoNo4Pro & Farm650,000$558,495$0$0$No750,000$850,000$975,000$Link
Chase De LeoMoose (Win)C211996-01-01Yes179 Lbs5 ft9NoNoNo1Pro & Farm750,000$644,417$0$0$NoLink
Christian DvorakMoose (Win)LW211996-01-01Yes195 Lbs6 ft0NoNoNo1Pro & Farm800,000$687,379$0$0$NoLink
Daniel VladarMoose (Win)G201997-01-01Yes185 Lbs6 ft5NoNoNo3Pro & Farm500,000$429,612$0$0$No700,000$750,000$Link
Dylan StromeMoose (Win)C201997-01-01Yes200 Lbs6 ft3NoNoNo4Pro & Farm950,000$816,262$0$0$No975,000$1,500,000$2,250,000$Link
Erik Cernak (Out of Payroll)Moose (Win)D201997-01-01Yes233 Lbs6 ft3NoNoNo2Pro & Farm950,000$816,262$0$0$Yes975,000$Link
Filip GustavssonMoose (Win)G191998-01-01Yes183 Lbs6 ft2NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Jake LeschyshynMoose (Win)C181999-01-01Yes192 Lbs5 ft11NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Joey DaccordMoose (Win)G211996-01-01No197 Lbs6 ft2NoNoNo1Pro & Farm600,000$515,534$0$0$NoLink
Jonah GadjovichMoose (Win)LW191998-01-01Yes209 Lbs6 ft2NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Jonathan KovacevicMoose (Win)D201997-01-01Yes208 Lbs6 ft4NoNoNo1Pro & Farm350,000$300,728$0$0$NoLink
Josh MahuraMoose (Win)D191998-01-01Yes185 Lbs6 ft0NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Julien GauthierMoose (Win)RW201997-01-01Yes227 Lbs6 ft4NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Juuso Valimaki (Out of Payroll)Moose (Win)D191998-01-01Yes212 Lbs6 ft2NoNoNo2Pro & Farm500,000$429,612$0$0$Yes500,000$Link
Karel VejmelkaMoose (Win)G211996-01-01Yes224 Lbs6 ft4NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Lane MacDermidMoose (Win)LW281989-01-01No215 Lbs6 ft3NoNoNo1Pro & Farm700,000$601,456$0$0$No
Ludwig BystromMoose (Win)D231994-01-01Yes169 Lbs6 ft0NoNoNo1Pro & Farm975,000$837,743$0$0$NoLink
Mathieu JosephMoose (Win)RW201997-01-01Yes190 Lbs6 ft1NoNoNo3Pro & Farm950,000$816,262$0$0$No975,000$1,000,000$Link
Matthew BenningMoose (Win)D231994-01-01Yes180 Lbs6 ft0NoNoNo1Pro & Farm750,000$644,417$0$0$NoLink
Max JonesMoose (Win)LW191998-01-01Yes220 Lbs6 ft1NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Michael McLeodMoose (Win)C191998-01-01Yes187 Lbs6 ft2NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Mitchell StephensMoose (Win)C201997-01-01Yes193 Lbs5 ft11NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Nathan BastianMoose (Win)RW201997-01-01Yes205 Lbs6 ft4NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Nathan WalkerMoose (Win)RW231994-01-01Yes186 Lbs5 ft9NoNoNo1Pro & Farm850,000$730,340$0$0$NoLink
Nelson NogierMoose (Win)D211996-01-01Yes191 Lbs6 ft2NoNoNo1Pro & Farm600,000$515,534$0$0$NoLink
Nick MerkleyMoose (Win)RW201997-01-01Yes194 Lbs5 ft10NoNoNo4Pro & Farm550,000$472,573$0$0$No550,000$650,000$650,000$Link
Roman JosiMoose (Win)D271990-01-01No198 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$859,223$0$0$No
Roope HintzMoose (Win)LW211996-01-01Yes220 Lbs6 ft3NoNoNo3Pro & Farm975,000$837,743$0$0$No1,500,000$2,250,000$Link
Tim GettingerMoose (Win)LW191998-01-01Yes220 Lbs6 ft6NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Urho VaakanainenMoose (Win)D181999-01-01Yes200 Lbs6 ft2NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Vinni LettieriMoose (Win)C221995-01-01Yes185 Lbs5 ft11NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
William BittenMoose (Win)RW191998-01-01Yes179 Lbs5 ft10NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3420.68199 Lbs6 ft11.71639,706$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Roope HintzDylan StromeNathan Walker40122
2Christian DvorakMichael McLeodMathieu Joseph30122
3Boris KatchoukChase De LeoJulien Gauthier20122
4C.J. SmithJake LeschyshynNick Merkley10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ludwig BystromRoman Josi40122
2Josh MahuraMatthew Benning30122
3Nelson NogierUrho Vaakanainen20122
4Josh MahuraNelson Nogier10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Roope HintzDylan StromeNathan Walker60122
2Christian DvorakMichael McLeodMathieu Joseph40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Josh MahuraRoman Josi60122
2Ludwig BystromMatthew Benning40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nathan WalkerRoope Hintz60122
2Christian DvorakMathieu Joseph40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nelson NogierRoman Josi60122
2Ludwig BystromMatthew Benning40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Nathan Walker60122Nelson NogierRoman Josi60122
2Roope Hintz40122Ludwig BystromMatthew Benning40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Dylan StromeRoope Hintz60122
2Christian DvorakNathan Walker40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Josh MahuraRoman Josi60122
2Ludwig BystromMatthew Benning40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Roope HintzDylan StromeNathan WalkerLudwig BystromRoman Josi
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Roope HintzMichael McLeodNathan WalkerLudwig BystromRoman Josi
Extra Forwards
Normal PowerPlayPenalty Kill
Roope Hintz, Christian Dvorak, Nathan WalkerNathan Walker, Michael McLeodMichael McLeod
Extra Defensemen
Normal PowerPlayPenalty Kill
Nelson Nogier, Roman Josi, Josh MahuraNelson NogierRoman Josi, Josh Mahura
Penalty Shots
Nathan Walker, Roope Hintz, Christian Dvorak, Dylan Strome, Michael McLeod
Goalie
#1 : Filip Gustavsson, #2 : Brandon Halverson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda2010001078-11010000024-21000001054120.5007101700131613668134139144136926184312216.67%9455.56%015331149.20%13428447.18%9017651.14%256138261117216107
2Condors3110001012841010000034-12100001094540.667121830001316136108134139144139038306219315.79%15193.33%115331149.20%13428447.18%9017651.14%256138261117216107
3Griffins21000010752110000004311000001032141.000710170013161367213413914413651816451317.69%8275.00%115331149.20%13428447.18%9017651.14%256138261117216107
4Little Stars11000000422110000004220000000000021.0004610001316136311341391441334131018000.00%50100.00%015331149.20%13428447.18%9017651.14%256138261117216107
5Rocket20200000713-61010000045-11010000038-500.000712190013161366113413914413592423398112.50%11463.64%015331149.20%13428447.18%9017651.14%256138261117216107
6Wolves22000000853110000003211100000053241.0008142200131613679134139144136922844900.00%4175.00%015331149.20%13428447.18%9017651.14%256138261117216107
Total1254000304541463300000202006210003025214160.66745701150013161364191341391441338614110525161711.48%521276.92%215331149.20%13428447.18%9017651.14%256138261117216107
_Since Last GM Reset1254000304541463300000202006210003025214160.66745701150013161364191341391441338614110525161711.48%521276.92%215331149.20%13428447.18%9017651.14%256138261117216107
_Vs Conference924000303334-1413000001316-35110003020182100.556335083001316136309134139144132831068718952713.46%431174.42%215331149.20%13428447.18%9017651.14%256138261117216107
_Vs Division924000303334-1413000001316-35110003020182100.556335083001316136309134139144132831068718952713.46%431174.42%215331149.20%13428447.18%9017651.14%256138261117216107

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1216W1457011541938614110525100
All Games
GPWLOTWOTL SOWSOLGFGA
125400304541
Home Games
GPWLOTWOTL SOWSOLGFGA
63300002020
Visitor Games
GPWLOTWOTL SOWSOLGFGA
62100302521
Last 10 Games
WLOTWOTL SOWSOL
530020
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
61711.48%521276.92%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
134139144131316136
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
15331149.20%13428447.18%9017651.14%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
256138261117216107


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-10-272Rocket5Moose4BLR1BoxScore
3 - 2022-10-2911Moose3Condors2AWXXR1BoxScore
6 - 2022-11-0131Moose5Barracuda4AWXXBoxScore
9 - 2022-11-0446Little Stars2Moose4BWBoxScore
12 - 2022-11-0763Griffins3Moose4BWR1BoxScore
14 - 2022-11-0973Moose3Griffins2AWXXBoxScore
16 - 2022-11-1181Moose3Rocket8ALR1BoxScore
19 - 2022-11-1496Barracuda4Moose2BLR1BoxScore
21 - 2022-11-16115Wolves2Moose3BWBoxScore
23 - 2022-11-18126Moose5Wolves3AWBoxScore
26 - 2022-11-21139Condors4Moose3BLR1BoxScore
28 - 2022-11-23151Moose6Condors2AWBoxScore
32 - 2022-11-27171Condors-Moose-
35 - 2022-11-30185Moose-Barracuda-
37 - 2022-12-02193Griffins-Moose-
39 - 2022-12-04209Moose-Comets-
42 - 2022-12-07221Eagles-Moose-
45 - 2022-12-10237Monsters-Moose-
48 - 2022-12-13250Moose-Phantoms-
52 - 2022-12-17265Rocket-Moose-
55 - 2022-12-20284Moose-Wolfpack-
57 - 2022-12-22294Little Stars-Moose-
61 - 2022-12-26313Moose-Rampage-
62 - 2022-12-27319Condors-Moose-
66 - 2022-12-31335Moose-Heat-
67 - 2023-01-01345Griffins-Moose-
70 - 2023-01-04360Moose-Punishers-
72 - 2023-01-06370Moose-Admirals-
73 - 2023-01-07376Thunderbirds-Moose-
77 - 2023-01-11396Heat-Moose-
81 - 2023-01-15417Moose-Reign-
82 - 2023-01-16424Senators-Moose-
85 - 2023-01-19437Moose-Bears-
87 - 2023-01-21449Bears-Moose-
91 - 2023-01-25469Moose-Reign-
92 - 2023-01-26475Punishers-Moose-
95 - 2023-01-29497Wolves-Moose-
97 - 2023-01-31506Moose-Eagles-
101 - 2023-02-04524Little Stars-Moose-
104 - 2023-02-07540Moose-Marlies-
106 - 2023-02-09551Phantoms-Moose-
108 - 2023-02-11562Moose-Marlies-
110 - 2023-02-13574Moose-Thunderbirds-
111 - 2023-02-14581Penguins-Moose-
115 - 2023-02-18597Moose-Crunch-
117 - 2023-02-20606Sound Tigers-Moose-
119 - 2023-02-22618Moose-Rocket-
122 - 2023-02-25634Rocket-Moose-
124 - 2023-02-27644Moose-Devils-
126 - 2023-03-01653Moose-Icehogs-
128 - 2023-03-03662Wolfpack-Moose-
130 - 2023-03-05680Moose-Wolves-
132 - 2023-03-07687Heat-Moose-
134 - 2023-03-09701Moose-Condors-
136 - 2023-03-11713Moose-Penguins-
137 - 2023-03-12717Devils-Moose-
141 - 2023-03-16738Crunch-Moose-
144 - 2023-03-19751Moose-Rocket-
147 - 2023-03-22764Comets-Moose-
149 - 2023-03-24776Moose-Little Stars-
152 - 2023-03-27791Moose-Penguins-
153 - 2023-03-28797Admirals-Moose-
156 - 2023-03-31812Moose-Sound Tigers-
158 - 2023-04-02820Icehogs-Moose-
Trade Deadline --- Trades can’t be done after this day is simulated!
161 - 2023-04-05834Moose-Icehogs-
164 - 2023-04-08849Marlies-Moose-
166 - 2023-04-10856Moose-Senators-
168 - 2023-04-12871Barracuda-Moose-
170 - 2023-04-14882Moose-Senators-
172 - 2023-04-16894Moose-Griffins-
174 - 2023-04-18900Moose-Monsters-
176 - 2023-04-20908Barracuda-Moose-
178 - 2023-04-22921Moose-Griffins-
179 - 2023-04-23927Moose-Barracuda-
181 - 2023-04-25936Phantoms-Moose-
183 - 2023-04-27946Moose-Monsters-
186 - 2023-04-30961Reign-Moose-
192 - 2023-05-06986Admirals-Moose-
198 - 2023-05-121010Rampage-Moose-
203 - 2023-05-171027Reign-Moose-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance10,9815,808
Attendance PCT91.51%96.80%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
34 2798 - 93.27% 82,505$495,027$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
443,396$ 2,175,000$ 1,910,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,854$ 301,280$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,805,153$ 177 15,170$ 2,685,090$




Moose Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Moose Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Moose Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Moose Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Moose Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA