Login

Heat
GP: 12 | W: 5 | L: 6 | OTL: 1 | P: 11
GF: 45 | GA: 48 | PP%: 25.40% | PK%: 78.69%
GM : Steve Landry | Morale : 38 | Team Overall : 65
Next Games #166 vs Condors
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Senators
7-5-2, 16pts
5
FINAL
6 Heat
5-6-1, 11pts
Team Stats
W2StreakL1
5-1-0Home Record3-3-0
2-4-2Away Record2-3-1
5-3-2Last 10 Games4-5-1
4.93Goals Per Game3.75
4.71Goals Against Per Game4.00
24.14%Power Play Percentage25.40%
72.22%Penalty Kill Percentage78.69%
Heat
5-6-1, 11pts
3
FINAL
5 Reign
7-2-2, 16pts
Team Stats
L1StreakW2
3-3-0Home Record5-1-0
2-3-1Away Record2-1-2
4-5-1Last 10 Games6-2-2
3.75Goals Per Game4.27
4.00Goals Against Per Game3.82
25.40%Power Play Percentage22.92%
78.69%Penalty Kill Percentage81.25%
Heat
5-6-1, 11pts
2022-11-26
Condors
6-4-2, 14pts
Team Stats
L1StreakL1
3-3-0Home Record2-2-2
2-3-1Away Record4-2-0
4-5-1Last 10 Games5-4-1
3.75Goals Per Game3.67
4.00Goals Against Per Game4.00
25.40%Power Play Percentage15.09%
78.69%Penalty Kill Percentage81.54%
Griffins
6-5-2, 14pts
2022-11-28
Heat
5-6-1, 11pts
Team Stats
L1StreakL1
2-2-1Home Record3-3-0
4-3-1Away Record2-3-1
4-5-1Last 10 Games4-5-1
4.38Goals Per Game3.75
4.08Goals Against Per Game4.00
14.04%Power Play Percentage25.40%
76.81%Penalty Kill Percentage78.69%
Heat
5-6-1, 11pts
2022-12-01
Icehogs
6-5-0, 12pts
Team Stats
L1StreakL1
3-3-0Home Record4-2-0
2-3-1Away Record2-3-0
4-5-1Last 10 Games6-4-0
3.75Goals Per Game4.27
4.00Goals Against Per Game4.18
25.40%Power Play Percentage24.32%
78.69%Penalty Kill Percentage81.58%
Team Leaders
Goals
Evgeny Svechnikov
8
Assists
Victor Rask
20
Points
Victor Rask
24
Plus/Minus
Victor Rask
3
Wins
Michael Hutchinson
5
Save Percentage
Michael Hutchinson
0.892

Team Stats
Goals For
45
3.75 GFG
Shots For
375
31.25 Avg
Power Play Percentage
25.4%
16 GF
Offensive Zone Start
39.5%
Goals Against
48
4.00 GAA
Shots Against
380
31.67 Avg
Penalty Kill Percentage
78.7%
13 GA
Defensive Zone Start
35.4%
Team Info

General ManagerSteve Landry
CoachCraig MacTavish
DivisionFritz-Kraatz
ConferenceRobert-Lebel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,801
Season Tickets300


Roster Info

Pro Team32
Farm Team20
Contract Limit52 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Matthew NietoX100.007328797077817975748072647268633839720251950,000$
2Evgeny Svechnikov (R)X100.006932866886767772757088527054465841710212900,000$
3Victor Rask (R)X100.007234787376747573767179637660504441710242950,000$
4Peter Cehlarik (R)X100.006744797165727172737470597048465241680223800,000$
5Ryan SpoonerX100.006431757374737369757868616653483641680251850,000$
6Barclay Goodrow (R)X100.007629737168676868656971706446503841670241850,000$
7Nico Sturm (R)X100.006429877175777663717356686848494941670221500,000$
8Chris BrownX100.006342807369707263605682536950502930660261750,000$
9Eric Karlsson (R)X100.008033726777666862636471615447474141650233650,000$
10Jesper Bratt (R)X100.006047706963716768716967557041427138640191500,000$
11Taylor Raddysh (R)X100.005546786067675767675963556541416441610192500,000$
12Tage Thompson (R)X100.005532836762756251626949595744436541590201500,000$
13Mathieu BrodeurX100.007228856872747472487157775969542541710271850,000$
14Rasmus Andersson (R)X100.007137828165667281427965725455476041710212950,000$
15Frank Corrado (R)X100.006940736976757473577059686057503933680243800,000$
16Trevor Carrick (R)X100.006038748063647475397455654146473536660231600,000$
17Brandon Hickey (R)X100.006227825960596050336642764943434241620212600,000$
18Erik Brannstrom (R)X100.004829676944426982338057673340408536600182500,000$
Scratches
1Philip VaroneX44.417124717273757875797672626673652932710271900,000$
2Ryan Donato (R)X100.007237736278647065716473476543435328640211600,000$
3Vladislav Kamenev (R)X100.006928714971656767585774567143435428610211600,000$
4Ivan Chekhovich (R)X100.006223734673545759565875336340407128570182500,000$
5Radim Zohorna (R)X100.005537735767716058525567415546445528570211500,000$
6Skyler Brind'Amour (R)X100.004331754952685544525351535140406928520182500,000$
7John Gilmour (R)X100.006932756661746673507156645647493428650242700,000$
8Petteri Lindbohm (R)X100.005839746164666972456670675547523728650241600,000$
9Dominik Masin (R)X97.436431846567626853296042755046445331630213600,000$
10Christian Jaros (R)X100.006529756260595660326744705043444728620213600,000$
11Darren Raddysh (R)X100.006124906356666045446635653749455528600212500,000$
TEAM AVERAGE97.99643377666868686657686361594947493565
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Michael Hutchinson100.00727874737673737877697265632641740271975,000$
2Vitek Vanecek100.00626867585871765156746144445141620212600,000$
Scratches
1Collin Delia (R)100.00715263706855495761536641416128580231500,000$
TEAM AVERAGE100.0068666867676666626565665049463765
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Craig MacTavish78756975766752CAN553800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Victor RaskHeat (Cal)C1242024360202736141811.11%624220.2411112452101110058.06%37295001.9811000131
2Evgeny SvechnikovHeat (Cal)RW128614-100201839171520.51%323819.916281052000001042.86%2176011.1704000300
3Matthew NietoHeat (Cal)LW96814-28018851142111.76%419822.04461019430001120166.67%1887011.4114000011
4Rasmus AnderssonHeat (Cal)D12369-1601714361068.33%1128623.89112155500007000.00%0145000.6300000000
5Jesper BrattHeat (Cal)LW1244821751091551426.67%417714.79011135000000072.73%1126000.9033010000
6Barclay GoodrowHeat (Cal)RW1243706025142671715.38%720016.720222350000230056.25%1665000.7000000000
7Peter CehlarikHeat (Cal)LW12437-460188328812.50%518115.171012140001440050.00%842000.7700000010
8Philip VaroneHeat (Cal)C11235-21602222259198.00%418917.191013300000360054.66%16180000.5300000100
9Frank CorradoHeat (Cal)D10134010081717575.88%1622022.06112235011114000.00%025000.3600000000
10Ryan SpoonerHeat (Cal)C12134-460149243164.17%212710.6100001000060050.88%5732000.6300000000
11Eric KarlssonHeat (Cal)LW12213-340125155113.33%412710.660001300001500100.00%131100.4700000110
12Dominik MasinHeat (Cal)D9022-62010112210.00%917519.46022022000033000.00%006000.2300000000
13Mathieu BrodeurHeat (Cal)D12022-660151715640.00%2027823.21011019000251000.00%0312000.1400000000
14Trevor CarrickHeat (Cal)D902201001284330.00%714716.37011022000023000.00%012000.2700000000
15Taylor RaddyshHeat (Cal)RW12112-44014455120.00%21189.8500004000001033.33%321000.3400000010
16Jake DeBruskFlamesLW11010000322050.00%02222.1210111000020040.00%500000.9000000000
17Erik BrannstromHeat (Cal)D8011-6120396430.00%816320.4800012500009000.00%023000.1200000000
18Kevin LabancFlamesRW11010001062416.67%02222.120000100002000.00%300000.9000000000
19Nico SturmHeat (Cal)C12011-4005613360.00%312510.42000000001220047.62%4232000.1600000000
20Brandon HickeyHeat (Cal)D12000120854230.00%1016814.0600006000037000.00%013000.0000000000
21Chris BrownHeat (Cal)C5000-100432260.00%2469.2700004000060066.67%1222000.0000000000
22Christian JarosHeat (Cal)D1000000100000.00%077.230000000000000.00%001000.0000000000
23John GilmourHeat (Cal)D1000000100000.00%01111.900000000000000.00%001000.0000000000
24Petteri LindbohmHeat (Cal)D1000000010000.00%11212.530000000000000.00%000000.0000000000
25Ryan DonatoHeat (Cal)C1000000000000.00%011.150000000001000.00%000000.0000000000
26Tage ThompsonHeat (Cal)RW11000-4405100030.00%0837.6000000000000050.00%200000.0000000000
Team Total or Average2224269111-42125526322837512817611.20%128357516.111628446146711273552155.74%7328077120.62512010672
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HutchinsonHeat (Cal)95310.8923.385330030277147100.7691393100
2Vitek VanecekHeat (Cal)40300.8355.00204001710352100.000038000
Team Total or Average135610.8763.827380047380199200.769131211100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Barclay GoodrowHeat (Cal)RW241993-01-01Yes215 Lbs6 ft2NoNoNo1Pro & Farm850,000$730,340$0$0$No
Brandon HickeyHeat (Cal)D211996-01-01Yes201 Lbs6 ft2NoNoNo2Pro & Farm600,000$515,534$0$0$No600,000$Link
Chris BrownHeat (Cal)C261991-01-01No215 Lbs6 ft2NoNoNo1Pro & Farm750,000$644,417$0$0$No
Christian JarosHeat (Cal)D211996-01-01Yes222 Lbs6 ft3NoNoNo3Pro & Farm600,000$515,534$0$0$No650,000$700,000$Link
Collin DeliaHeat (Cal)G231994-01-01Yes207 Lbs6 ft2NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Darren RaddyshHeat (Cal)D211996-01-01Yes200 Lbs6 ft1NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Dominik MasinHeat (Cal)D211996-01-01Yes196 Lbs6 ft2NoNoNo3Pro & Farm600,000$515,534$0$0$No650,000$700,000$Link
Eric KarlssonHeat (Cal)LW231994-01-01Yes161 Lbs5 ft11NoNoNo3Pro & Farm650,000$558,495$0$0$No750,000$850,000$
Erik BrannstromHeat (Cal)D181999-01-01Yes185 Lbs5 ft10NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Evgeny SvechnikovHeat (Cal)RW211996-01-01Yes208 Lbs6 ft3NoNoNo2Pro & Farm900,000$773,301$0$0$No975,000$Link
Frank CorradoHeat (Cal)D241993-01-01Yes195 Lbs6 ft0NoNoNo3Pro & Farm800,000$687,379$0$0$No850,000$900,000$
Ivan ChekhovichHeat (Cal)LW181999-01-01Yes187 Lbs5 ft10NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Jesper BrattHeat (Cal)LW191998-01-01Yes185 Lbs5 ft10NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
John GilmourHeat (Cal)D241993-01-01Yes185 Lbs6 ft0NoNoNo2Pro & Farm700,000$601,456$0$0$No800,000$Link
Mathieu BrodeurHeat (Cal)D271990-01-01No215 Lbs6 ft6NoNoNo1Pro & Farm850,000$730,340$0$0$No
Matthew NietoHeat (Cal)LW251992-01-01No190 Lbs5 ft11NoNoNo1Pro & Farm950,000$816,262$0$0$No
Michael HutchinsonHeat (Cal)G271990-01-01No202 Lbs6 ft3NoNoNo1Pro & Farm975,000$837,743$0$0$No
Nico SturmHeat (Cal)C221995-01-01Yes207 Lbs6 ft3NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Peter CehlarikHeat (Cal)LW221995-01-01Yes185 Lbs6 ft2NoNoNo3Pro & Farm800,000$687,379$0$0$No850,000$900,000$Link
Petteri LindbohmHeat (Cal)D241993-01-01Yes209 Lbs6 ft3NoNoNo1Pro & Farm600,000$515,534$0$0$NoLink
Philip Varone (Out of Payroll)Heat (Cal)C271990-01-01No185 Lbs5 ft10NoNoNo1Pro & Farm900,000$773,301$0$0$Yes
Radim ZohornaHeat (Cal)LW211996-01-01Yes229 Lbs6 ft6NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Rasmus AnderssonHeat (Cal)D211996-01-01Yes214 Lbs6 ft1NoNoNo2Pro & Farm950,000$816,262$0$0$No1,500,000$Link
Ryan DonatoHeat (Cal)C211996-01-01Yes193 Lbs6 ft0NoNoNo1Pro & Farm600,000$515,534$0$0$NoLink
Ryan SpoonerHeat (Cal)C251992-01-01No181 Lbs5 ft11NoNoNo1Pro & Farm850,000$730,340$0$0$No
Skyler Brind'AmourHeat (Cal)C181999-01-01Yes185 Lbs6 ft2NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Tage ThompsonHeat (Cal)RW201997-01-01Yes218 Lbs6 ft7NoNoNo1Pro & Farm500,000$429,612$0$0$NoLink
Taylor RaddyshHeat (Cal)RW191998-01-01Yes198 Lbs6 ft3NoNoNo2Pro & Farm500,000$429,612$0$0$No500,000$Link
Trevor CarrickHeat (Cal)D231994-01-01Yes171 Lbs6 ft1NoNoNo1Pro & Farm600,000$515,534$0$0$NoLink
Victor RaskHeat (Cal)C241993-01-01Yes200 Lbs6 ft2NoNoNo2Pro & Farm950,000$816,262$0$0$No1,300,000$
Vitek VanecekHeat (Cal)G211996-01-01No190 Lbs5 ft11NoNoNo2Pro & Farm600,000$515,534$0$0$No600,000$Link
Vladislav KamenevHeat (Cal)C211996-01-01Yes194 Lbs6 ft2NoNoNo1Pro & Farm600,000$515,534$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3222.25198 Lbs6 ft11.66677,344$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matthew NietoVictor RaskEvgeny Svechnikov40122
2Jesper BrattRyan SpoonerBarclay Goodrow30122
3Peter CehlarikChris BrownTaylor Raddysh20122
4Eric KarlssonNico SturmTage Thompson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonFrank Corrado40122
2Erik BrannstromMathieu Brodeur30122
3Brandon HickeyTrevor Carrick20122
4Brandon HickeyMathieu Brodeur10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matthew NietoVictor RaskEvgeny Svechnikov60122
2Jesper BrattChris BrownBarclay Goodrow40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonFrank Corrado60122
2Erik BrannstromMathieu Brodeur40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Nico SturmPeter Cehlarik60122
2Ryan SpoonerBarclay Goodrow40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Trevor CarrickMathieu Brodeur60122
2Brandon HickeyFrank Corrado40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Matthew Nieto60122Rasmus AnderssonFrank Corrado60122
2Nico Sturm40122Trevor CarrickMathieu Brodeur40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Victor RaskMatthew Nieto60122
2Ryan SpoonerEvgeny Svechnikov40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonFrank Corrado60122
2Erik BrannstromMathieu Brodeur40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Matthew NietoVictor RaskEvgeny SvechnikovRasmus AnderssonFrank Corrado
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Matthew NietoVictor RaskEvgeny SvechnikovRasmus AnderssonFrank Corrado
Extra Forwards
Normal PowerPlayPenalty Kill
Nico Sturm, Jesper Bratt, Evgeny SvechnikovJesper Bratt, Peter CehlarikBarclay Goodrow
Extra Defensemen
Normal PowerPlayPenalty Kill
Mathieu Brodeur, Erik Brannstrom, Brandon HickeyErik BrannstromTrevor Carrick, Brandon Hickey
Penalty Shots
Evgeny Svechnikov, Matthew Nieto, Jesper Bratt, Victor Rask, Peter Cehlarik
Goalie
#1 : Michael Hutchinson, #2 : Vitek Vanecek


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Condors11000000422000000000001100000042221.000481200211475281431301021133131020100.00%5180.00%016328956.40%13525952.12%11018459.78%258139254118226113
2Marlies2110000089-11010000027-51100000062420.500811190021147566143130102115723294913430.77%12283.33%016328956.40%13525952.12%11018459.78%258139254118226113
3Phantoms20100001810-21010000045-11000000145-110.250815230021147560143130102116515225217529.41%11190.91%016328956.40%13525952.12%11018459.78%258139254118226113
4Reign604000201922-3301000201110130300000812-440.3331926450021147519714313010211194625612027518.52%29679.31%116328956.40%13525952.12%11018459.78%258139254118226113
5Senators10000010651100000106510000000000021.000691500211475241431301021131158225240.00%4325.00%016328956.40%13525952.12%11018459.78%258139254118226113
Total1226000314548-3603000302327-46230000122211110.45845691140021147537514313010211380128125263631625.40%611378.69%116328956.40%13525952.12%11018459.78%258139254118226113
_Since Last GM Reset1226000314548-3603000302327-46230000122211110.45845691140021147537514313010211380128125263631625.40%611378.69%116328956.40%13525952.12%11018459.78%258139254118226113
_Vs Conference1226000314548-3603000302327-46230000122211110.45845691140021147537514313010211380128125263631625.40%611378.69%116328956.40%13525952.12%11018459.78%258139254118226113
_Vs Division1016000213541-6503000201722-5513000011819-170.3503552870021147532314313010211316100107221571424.56%52982.69%116328956.40%13525952.12%11018459.78%258139254118226113

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1211L1456911437538012812526300
All Games
GPWLOTWOTL SOWSOLGFGA
122600314548
Home Games
GPWLOTWOTL SOWSOLGFGA
60300302327
Visitor Games
GPWLOTWOTL SOWSOLGFGA
62300012221
Last 10 Games
WLOTWOTL SOWSOL
250021
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
631625.40%611378.69%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
14313010211211475
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
16328956.40%13525952.12%11018459.78%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
258139254118226113


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-10-276Heat2Reign3ALR1BoxScore
5 - 2022-10-3125Reign2Heat3BWXXBoxScore
7 - 2022-11-0239Reign1Heat2BWXXR1BoxScore
9 - 2022-11-0448Heat4Phantoms5ALXXBoxScore
10 - 2022-11-0551Heat3Reign4ALR1BoxScore
13 - 2022-11-0868Phantoms5Heat4BLBoxScore
16 - 2022-11-1183Heat6Marlies2AWBoxScore
19 - 2022-11-1498Heat4Condors2AWBoxScore
20 - 2022-11-15103Marlies7Heat2BLBoxScore
23 - 2022-11-18124Reign7Heat6BLR1BoxScore
25 - 2022-11-20136Senators5Heat6BWXXBoxScore
26 - 2022-11-21144Heat3Reign5ALR1BoxScore
31 - 2022-11-26166Heat-Condors-
33 - 2022-11-28175Griffins-Heat-
36 - 2022-12-01191Heat-Icehogs-
38 - 2022-12-03202Barracuda-Heat-
43 - 2022-12-08222Little Stars-Heat-
45 - 2022-12-10236Heat-Eagles-
47 - 2022-12-12247Condors-Heat-
49 - 2022-12-14253Heat-Icehogs-
51 - 2022-12-16264Heat-Monsters-
53 - 2022-12-18272Heat-Marlies-
55 - 2022-12-20282Admirals-Heat-
58 - 2022-12-23295Heat-Phantoms-
60 - 2022-12-25305Marlies-Heat-
62 - 2022-12-27318Heat-Rocket-
64 - 2022-12-29328Heat-Senators-
66 - 2022-12-31335Moose-Heat-
69 - 2023-01-03357Phantoms-Heat-
71 - 2023-01-05369Heat-Rampage-
73 - 2023-01-07378Heat-Sound Tigers-
75 - 2023-01-09386Marlies-Heat-
77 - 2023-01-11396Heat-Moose-
79 - 2023-01-13410Heat-Punishers-
81 - 2023-01-15415Phantoms-Heat-
84 - 2023-01-18432Heat-Devils-
85 - 2023-01-19438Reign-Heat-
88 - 2023-01-22454Heat-Punishers-
90 - 2023-01-24464Punishers-Heat-
92 - 2023-01-26479Heat-Penguins-
94 - 2023-01-28490Sound Tigers-Heat-
99 - 2023-02-02515Rampage-Heat-
101 - 2023-02-04527Heat-Wolves-
104 - 2023-02-07538Heat-Wolfpack-
105 - 2023-02-08545Rocket-Heat-
109 - 2023-02-12568Comets-Heat-
112 - 2023-02-15586Heat-Griffins-
114 - 2023-02-17594Crunch-Heat-
118 - 2023-02-21616Bears-Heat-
120 - 2023-02-23621Heat-Barracuda-
122 - 2023-02-25633Heat-Monsters-
124 - 2023-02-27643Monsters-Heat-
126 - 2023-03-01650Heat-Condors-
128 - 2023-03-03667Thunderbirds-Heat-
130 - 2023-03-05678Heat-Reign-
132 - 2023-03-07687Heat-Moose-
134 - 2023-03-09699Reign-Heat-
136 - 2023-03-11711Heat-Comets-
138 - 2023-03-13723Eagles-Heat-
141 - 2023-03-16737Heat-Marlies-
143 - 2023-03-18748Heat-Crunch-
144 - 2023-03-19753Griffins-Heat-
149 - 2023-03-24777Devils-Heat-
153 - 2023-03-28801Wolfpack-Heat-
155 - 2023-03-30806Heat-Bears-
159 - 2023-04-03827Wolves-Heat-
Trade Deadline --- Trades can’t be done after this day is simulated!
162 - 2023-04-06837Heat-Reign-
165 - 2023-04-09852Wolves-Heat-
166 - 2023-04-10862Heat-Admirals-
169 - 2023-04-13878Heat-Little Stars-
170 - 2023-04-14884Icehogs-Heat-
175 - 2023-04-19905Rocket-Heat-
180 - 2023-04-24928Icehogs-Heat-
182 - 2023-04-26938Heat-Thunderbirds-
185 - 2023-04-29956Senators-Heat-
187 - 2023-05-01966Heat-Admirals-
192 - 2023-05-06985Barracuda-Heat-
196 - 2023-05-101005Penguins-Heat-
202 - 2023-05-161024Penguins-Heat-
203 - 2023-05-171030Heat-Phantoms-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance11,3665,442
Attendance PCT94.72%90.70%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
34 2801 - 93.38% 83,902$503,412$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
418,270$ 2,077,500$ 1,850,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
10,085$ 305,662$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,852,668$ 177 13,968$ 2,472,336$




Heat Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Heat Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Heat Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Heat Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Heat Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA