Out of Date Version of the STHS! Please update your version!
Login

Admirals
GP: 80 | W: 34 | L: 42 | OTL: 4 | P: 72
GF: 306 | GA: 356 | PP%: 24.11% | PK%: 75.09%
GM : Dany Potvin | Morale : 31 | Team Overall : 64
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Admirals
34-42-4, 72pts
3
FINAL
6 Monsters
40-34-6, 86pts
Team Stats
L3StreakW1
17-19-4Home Record19-18-3
17-23-0Away Record21-16-3
3-6-1Last 10 Games6-4-0
3.83Goals Per Game4.45
4.45Goals Against Per Game4.25
24.11%Power Play Percentage23.03%
75.09%Penalty Kill Percentage77.63%
Admirals
34-42-4, 72pts
1
FINAL
12 Eagles
36-35-9, 81pts
Team Stats
L3StreakW1
17-19-4Home Record19-15-6
17-23-0Away Record17-20-3
3-6-1Last 10 Games3-5-2
3.83Goals Per Game4.55
4.45Goals Against Per Game4.75
24.11%Power Play Percentage23.99%
75.09%Penalty Kill Percentage77.29%
Team Leaders
Goals
Joel Armia
38
Assists
Markus Granlund
62
Points
Anton Gustafsson
92
Plus/Minus
Joni Ikonen
2
Wins
Tristan Jarry
24
Save Percentage
Tristan Jarry
0.875

Team Stats
Goals For
306
3.83 GFG
Shots For
2546
31.83 Avg
Power Play Percentage
24.1%
68 GF
Offensive Zone Start
34.9%
Goals Against
356
4.45 GAA
Shots Against
2760
34.50 Avg
Penalty Kill Percentage
75.1%%
73 GA
Defensive Zone Start
37.1%
Team Info

General ManagerDany Potvin
CoachWayne Gretzky
DivisionJohn-Ahearne
ConferenceRobert-Lebel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,801
Season Tickets300


Roster Info

Pro Team36
Farm Team18
Contract Limit54 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Anton GustafssonX100.007829787581717471747674707469563041720271800,000$
2Markus Granlund (R)X100.007629747677797574797573697761514155720242750,000$
3Joel Armia (R)X100.007632787379737472737481607258504639710242750,000$
4Mark McNeill (R)X100.007138767174747174767274717252504451710242750,000$
5Hunter Shinkaruk (R)X100.006439787466697068676981597348494451680231575,000$
6Lucas Wallmark (R)X100.006032817475737565797162706547464830680221575,000$
7Kasper Bjorkqvist (R)X100.006739787159757074818665495949474921680231500,000$
8Riley Barber (R)X100.006834816761636370687264677345454051660232650,000$
9Freddie HamiltonX100.006930817465686763717263625948473228650251700,000$
10Nolan Vesey (R)X100.007637727271537470626760555444464249630222760,000$
11Josh Norris (R)X100.005330716161666165504881386840407229590182500,000$
12Kristian Vesalainen (R)X100.006128594349525754585156484940407120510182500,000$
13Mattias BackmanX100.007131787673756768587557725961573546700252750,000$
14T.J BrodieX100.006432758268696973478062745563542941700271800,000$
15Travis Dermott (R)X100.005925808864607891468262705354456221700212650,000$
16Carl Dahlstrom (R)X100.007018836758587060396459755245464319650222650,000$
17Olli Juolevi (R)X100.006132758258485778346750674642426541640191500,000$
18Josh Wesley (R)X100.005639826064676652376752694043434518620211650,000$
19Reilly Walsh (R)X100.005533786558565546356341743840406951590182500,000$
20Ian Mitchell (R)X100.004234737153435169357454613540407741580182500,000$
Scratches
1Brett ConnollyX100.006729846376687171716976557049503732670251725,000$
2Alexandre MalletX100.007746717266608064576260495748472419620251600,000$
3Mark MacMillanX100.005037686656636367657765525647472919620251600,000$
4Ryan Olsen (R)X100.005229767068627164576165446745453319600232650,000$
5Stanislav GalievX100.005433746462624970555860507247472919590251600,000$
6Troy Bourke (R)X100.004738646656566463626766385145453319580232650,000$
7Carsen Twarynski (R)X100.004232825757775747576758635142445119580201500,000$
8Filip Chlapik (R)X100.005934675464535558655266475142425520560202650,000$
9Joni Ikonen (R)X100.004218715237473869515946405440406319500182500,000$
10Andreas Englund (R)X100.007231857168746472526755815754455546700211750,000$
11Christian Djoos (R)X100.007132816866586265466747755346473633660232650,000$
12Sergei Zborovskiy (R)X100.004829766164575944244828704242425720560201600,000$
13Libor Hajek (R)X100.006039715860535556315142564741415420560191500,000$
TEAM AVERAGE100.00623276686463656656676161584846473263
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Tristan Jarry99.00747575686877726158806852464651680222650,000$
2Felix Sanstrom100.00647167646867646663607144436638640202650,000$
Scratches
1Linus Ullmark100.00616468545273786557737348463419640241750,000$
TEAM AVERAGE99.6766707062637271645971714845493665
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Wayne Gretzky70628291526855Can642850,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Anton GustafssonAdmirals (Nas)C80385492-152801431832819117013.52%35167820.981117284422411251812052.83%18404136131.1079000557
2Markus GranlundAdmirals (Nas)LW73296291-23560149912777313710.47%48149220.451224364221411231185357.07%1916633021.2239000641
3Joel ArmiaAdmirals (Nas)RW743846840340120702406814115.83%42132217.8791524312010002435136.49%744928021.2703000642
4Travis DermottAdmirals (Nas)D58104858-18140397916269716.17%73117420.2551621261260119138010.00%03441000.9901000141
5Mark McNeillAdmirals (Nas)RW80273057-16440113892417013111.20%44141217.6646102014110151560147.13%875334000.8124000052
6Hunter ShinkarukAdmirals (Nas)LW80262349-1360135961945210913.40%25135016.895712181880114763250.98%514017000.7312000053
7T.J BrodieAdmirals (Nas)D8073643-115008112712846545.47%95164020.51336101780115198010.00%04639000.5200000104
8Kasper BjorkqvistAdmirals (Nas)RW44192443-201407234114427216.67%1871116.16551011671011182151.56%642415011.2111000131
9Lucas WallmarkAdmirals (Nas)C76142741-912067115122388911.48%37112014.7412346200091371053.67%8312827000.7301000200
10Andreas EnglundAdmirals (Nas)D6963238-25100851267937267.59%139166824.192911121890002210100.00%01949000.4600000003
11Riley BarberAdmirals (Nas)RW80171633-41007350108427715.74%147379.220002390001625146.67%452619000.9000000213
12Nolan VeseyAdmirals (Nas)LW8022931-1057512038107277420.56%1693911.751012280001131346.88%322210000.6600001121
13Josh NorrisAdmirals (Nas)C7391928-18340825957213515.79%26109715.03461061330000390139.47%131587000.5100000000
14Brett ConnollyAdmirals (Nas)RW59101222-1280492697344310.31%659910.1500007000020051.52%331211000.7300000001
15Freddie HamiltonAdmirals (Nas)C70111122-1680615711421589.65%2870210.040000140002152049.00%300229000.6300000001
16Reilly WalshAdmirals (Nas)D802121422001972327116.25%5890911.37101270000115000.00%0226000.3100000000
17Mattias BackmanAdmirals (Nas)D7421214-1028057684521244.44%62110414.92134391000297000.00%0442000.2500000000
18Olli JuoleviAdmirals (Nas)D8031013-836035494725216.38%51104913.121237122000119000.00%01024000.2500000100
19Ian MitchellAdmirals (Nas)D80358-16280154827151711.11%2895411.933257122000010100.00%0416000.1700000000
20Kristian VesalainenAdmirals (Nas)LW53347-732047201961115.79%74438.3700000000000025.00%802000.3200000010
21Christian DjoosAdmirals (Nas)D5906621002434159120.00%305589.47011227000057000.00%0222000.2100000000
22Carl DahlstromAdmirals (Nas)D49123-980293011559.09%2651310.49000022000039000.00%0220000.1200000000
23Joni IkonenAdmirals (Nas)C232132001655440.00%11175.1100001000010031.58%3810000.5100000000
24Alexandre MalletAdmirals (Nas)LW110111401147240.00%3978.84000000001100066.67%312000.2100000000
25Josh WesleyAdmirals (Nas)D21011-3004106240.00%91537.300000000003000.00%006000.1300000000
26Ryan OlsenAdmirals (Nas)C61011200753020.00%1579.6500000000000160.00%2032000.3500000000
27Mark MacMillanAdmirals (Nas)RW6000000110030.00%071.290000000000000.00%100000.00%00000000
28Stanislav GalievAdmirals (Nas)RW8000100000000.00%070.9800000000040025.00%400000.00%00000000
29Carsen TwarynskiAdmirals (Nas)LW18000020296020.00%11055.850000000000000.00%000000.00%00000000
Team Total or Average1644300503803-2425855163415982546831140511.78%9232372914.43681181862492214459531775281648.65%4937519537180.681430001263430
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Tristan JarryAdmirals (Nas)61243030.8754.203172202221779889340.667215722402
2Felix SanstromAdmirals (Nas)3791210.8714.52160720121941493110.85772251102
3Linus UllmarkAdmirals (Nas)11000.8575.00600053521000.00%017000
Team Total or Average99344240.8744.314840403482755140345288080504


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexandre MalletAdmirals (Nas)LW251992-01-01No195 Lbs6 ft1NoNoNo1Pro & Farm600,000$0$0$NoLink
Andreas EnglundAdmirals (Nas)D211996-01-01Yes189 Lbs6 ft3NoNoNo1Pro & Farm750,000$0$0$NoLink
Anton GustafssonAdmirals (Nas)C271990-01-01No193 Lbs6 ft2NoNoNo1Pro & Farm800,000$0$0$No
Brett ConnollyAdmirals (Nas)RW251992-01-01No181 Lbs6 ft2NoNoNo1Pro & Farm725,000$0$0$No
Carl DahlstromAdmirals (Nas)D221995-01-01Yes185 Lbs6 ft4NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Carsen TwarynskiAdmirals (Nas)LW201997-01-01Yes198 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$NoLink
Christian DjoosAdmirals (Nas)D231994-01-01Yes158 Lbs5 ft11NoNoNo2Pro & Farm650,000$0$0$No650,000$
Felix SanstromAdmirals (Nas)G201997-01-01No191 Lbs6 ft2NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Filip ChlapikAdmirals (Nas)C201997-01-01Yes194 Lbs6 ft2NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Freddie HamiltonAdmirals (Nas)C251992-01-01No195 Lbs6 ft1NoNoNo1Pro & Farm700,000$0$0$No
Hunter ShinkarukAdmirals (Nas)LW231994-01-01Yes185 Lbs5 ft11NoNoNo1Pro & Farm575,000$0$0$NoLink
Ian MitchellAdmirals (Nas)D181999-01-01Yes173 Lbs5 ft11NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Joel ArmiaAdmirals (Nas)RW241993-01-01Yes205 Lbs6 ft3NoNoNo2Pro & Farm750,000$0$0$No900,000$
Joni IkonenAdmirals (Nas)C181999-01-01Yes171 Lbs5 ft10NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Josh NorrisAdmirals (Nas)C181999-01-01Yes199 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Josh WesleyAdmirals (Nas)D211996-01-01Yes201 Lbs6 ft3NoNoNo1Pro & Farm650,000$0$0$NoLink
Kasper BjorkqvistAdmirals (Nas)RW231994-01-01Yes194 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$NoLink
Kristian VesalainenAdmirals (Nas)LW181999-01-01Yes207 Lbs6 ft3NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Libor HajekAdmirals (Nas)D191998-01-01Yes205 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$NoLink
Linus UllmarkAdmirals (Nas)G241993-01-01No198 Lbs6 ft3NoNoNo1Pro & Farm750,000$0$0$NoLink
Lucas WallmarkAdmirals (Nas)C221995-01-01Yes185 Lbs5 ft11NoNoNo1Pro & Farm575,000$0$0$NoLink
Mark MacMillanAdmirals (Nas)RW251992-01-01No172 Lbs6 ft0NoNoNo1Pro & Farm600,000$0$0$No
Mark McNeillAdmirals (Nas)RW241993-01-01Yes212 Lbs6 ft2NoNoNo2Pro & Farm750,000$0$0$No900,000$
Markus GranlundAdmirals (Nas)LW241993-01-01Yes178 Lbs6 ft0NoNoNo2Pro & Farm750,000$0$0$No900,000$
Mattias BackmanAdmirals (Nas)D251992-01-01No180 Lbs6 ft2NoNoNo2Pro & Farm750,000$0$0$No750,000$
Nolan VeseyAdmirals (Nas)LW221995-01-01Yes210 Lbs6 ft2NoNoNo2Pro & Farm760,000$0$0$No795,000$Link
Olli JuoleviAdmirals (Nas)D191998-01-01Yes183 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$NoLink
Reilly WalshAdmirals (Nas)D181999-01-01Yes185 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Riley BarberAdmirals (Nas)RW231994-01-01Yes194 Lbs5 ft11NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Ryan OlsenAdmirals (Nas)C231994-01-01Yes187 Lbs6 ft1NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Sergei ZborovskiyAdmirals (Nas)D201997-01-01Yes194 Lbs6 ft4NoNoNo1Pro & Farm600,000$0$0$NoLink
Stanislav GalievAdmirals (Nas)RW251992-01-01No187 Lbs6 ft1NoNoNo1Pro & Farm600,000$0$0$No
T.J BrodieAdmirals (Nas)D271990-01-01No182 Lbs6 ft1NoNoNo1Pro & Farm800,000$0$0$No
Travis DermottAdmirals (Nas)D211996-01-01Yes205 Lbs6 ft0NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Tristan JarryAdmirals (Nas)G221995-01-01No185 Lbs6 ft2NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Troy BourkeAdmirals (Nas)LW231994-01-01Yes156 Lbs5 ft10NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3622.14189 Lbs6 ft11.53634,306$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Markus GranlundAnton GustafssonJoel Armia40122
2Hunter ShinkarukLucas WallmarkMark McNeill30122
3Nolan VeseyFreddie HamiltonKasper Bjorkqvist20122
4Kristian VesalainenJosh NorrisRiley Barber10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mattias BackmanT.J Brodie40122
2Travis DermottCarl Dahlstrom30122
3Olli JuoleviJosh Wesley20122
4Reilly WalshIan Mitchell10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Markus GranlundAnton GustafssonJoel Armia60122
2Hunter ShinkarukLucas WallmarkMark McNeill40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mattias BackmanT.J Brodie60122
2Travis DermottCarl Dahlstrom40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Anton GustafssonMarkus Granlund60122
2Lucas WallmarkHunter Shinkaruk40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mattias BackmanT.J Brodie60122
2Travis DermottCarl Dahlstrom40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Anton Gustafsson60122Mattias BackmanT.J Brodie60122
2Lucas Wallmark40122Travis DermottCarl Dahlstrom40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Anton GustafssonMarkus Granlund60122
2Lucas WallmarkHunter Shinkaruk40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mattias BackmanT.J Brodie60122
2Travis DermottCarl Dahlstrom40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Markus GranlundAnton GustafssonJoel ArmiaMattias BackmanT.J Brodie
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Markus GranlundAnton GustafssonJoel ArmiaMattias BackmanT.J Brodie
Extra Forwards
Normal PowerPlayPenalty Kill
Kasper Bjorkqvist, Hunter Shinkaruk, Lucas WallmarkKasper Bjorkqvist, Hunter ShinkarukKasper Bjorkqvist
Extra Defensemen
Normal PowerPlayPenalty Kill
Josh Wesley, Reilly Walsh, Ian MitchellJosh WesleyJosh Wesley, Reilly Walsh
Penalty Shots
Markus Granlund, Anton Gustafsson, Joel Armia, Mark McNeill, Kasper Bjorkqvist
Goalie
#1 : Tristan Jarry, #2 : Felix Sanstrom


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda403000101119-820200000510-52010001069-320.2501115260087110100171338478847984512242397716531.25%17382.35%0842172248.90%909183349.59%651138247.11%167793117347451438722
2Bears20200000511-61010000047-31010000014-300.0005712008711010017568478847984558192245300.00%11281.82%0842172248.90%909183349.59%651138247.11%167793117347451438722
3Comets312000001316-31010000046-221100000910-120.333132336008711010017107847884798451072222549333.33%11463.64%0842172248.90%909183349.59%651138247.11%167793117347451438722
4Condors302010001016-61010000017-62010100099020.333101828008711010017968478847984510039286712216.67%14471.43%0842172248.90%909183349.59%651138247.11%167793117347451438722
5Crunch211000005501010000023-11100000032120.50059140087110100176484788479845632816397228.57%8275.00%1842172248.90%909183349.59%651138247.11%167793117347451438722
6Devils513010001824-620200000511-6311010001313040.400183048108711010017162847884798451734930919222.22%15846.67%0842172248.90%909183349.59%651138247.11%167793117347451438722
7Eagles21100000715-81100000063310100000112-1120.50071118008711010017638478847984581211034400.00%5260.00%0842172248.90%909183349.59%651138247.11%167793117347451438722
8Griffins3110001012932010001078-11100000051440.667122032008711010017114847884798458933146417211.76%7271.43%0842172248.90%909183349.59%651138247.11%167793117347451438722
9Heat312000001114-3211000007701010000047-320.333111627008711010017928478847984510531245710330.00%12466.67%0842172248.90%909183349.59%651138247.11%167793117347451438722
10Icehogs624000002027-732100000147730300000620-1440.33320345410871101001718784788479845202604013625520.00%20765.00%0842172248.90%909183349.59%651138247.11%167793117347451438722
11Little Stars3110001012932010001058-31100000071640.6671220320087110100171118478847984511640245113215.38%13284.62%1842172248.90%909183349.59%651138247.11%167793117347451438722
12Marlies412001001314-1311001009721010000047-330.3751322350087110100171188478847984514637347512325.00%17476.47%0842172248.90%909183349.59%651138247.11%167793117347451438722
13Monsters64100001262153200000115105321000001111090.75026477300871101001719184788479845207835013227622.22%25388.00%1842172248.90%909183349.59%651138247.11%167793117347451438722
14Moose31100010131211100000052320100010810-240.66713203300871101001791847884798451173422719333.33%11281.82%0842172248.90%909183349.59%651138247.11%167793117347451438722
15Penguins21100000990110000005231010000047-320.50091423008711010017648478847984564194319333.33%2150.00%0842172248.90%909183349.59%651138247.11%167793117347451438722
16Phantoms31100010131301010000057-22100001086240.667131831008711010017858478847984512139246510440.00%12375.00%1842172248.90%909183349.59%651138247.11%167793117347451438722
17Punishers20200000813-51010000026-41010000067-100.000814220087110100175684788479845792310337228.57%5340.00%0842172248.90%909183349.59%651138247.11%167793117347451438722
18Rampage2020000058-31010000034-11010000024-200.000581300871101001766847884798455331184210220.00%9366.67%0842172248.90%909183349.59%651138247.11%167793117347451438722
19Reign302000011015-51000000123-120200000812-410.167101929108711010017938478847984510548165711218.18%8187.50%0842172248.90%909183349.59%651138247.11%167793117347451438722
20Rocket3210000019172211000001112-11100000085340.6671931501087110100171098478847984511042205710330.00%11281.82%0842172248.90%909183349.59%651138247.11%167793117347451438722
21Senators73300010312743200001019127413000001215-380.57131487900871101001720184788479845239816416124625.00%32584.38%0842172248.90%909183349.59%651138247.11%167793117347451438722
22Sound Tigers22000000743110000004221100000032141.000711180087110100176084788479845692614388112.50%7185.71%0842172248.90%909183349.59%651138247.11%167793117347451438722
23Thunderbirds302000011119-820100001814-61010000035-210.16711182900871101001796847884798451043720746116.67%9188.89%0842172248.90%909183349.59%651138247.11%167793117347451438722
24Wolfpack2110000089-11010000035-21100000054120.500813211087110100177684788479845551910499333.33%5180.00%0842172248.90%909183349.59%651138247.11%167793117347451438722
25Wolves20101000910-1100010006511010000035-220.500917260087110100175584788479845752014345360.00%7357.14%0842172248.90%909183349.59%651138247.11%167793117347451438722
Total80254203163306356-5040131901133157168-1140122302030149188-39720.450306503809508711010017254684788479845276092358916342826824.11%2937375.09%4842172248.90%909183349.59%651138247.11%167793117347451438722
_Since Last GM Reset80254203163306356-5040131901133157168-1140122302030149188-39720.450306503809508711010017254684788479845276092358916342826824.11%2937375.09%4842172248.90%909183349.59%651138247.11%167793117347451438722
_Vs Conference48162301152189204-152410900122100928246140103089112-23470.490189308497308711010017151084788479845166356937510191834424.04%1864078.49%2842172248.90%909183349.59%651138247.11%167793117347451438722
_Vs Division19980001177752961000114829191037000002946-17210.5537712920610871101001757984788479845648224154429761722.37%771580.52%1842172248.90%909183349.59%651138247.11%167793117347451438722

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8072L330650380925462760923589163450
All Games
GPWLOTWOTL SOWSOLGFGA
8025423163306356
Home Games
GPWLOTWOTL SOWSOLGFGA
4013191133157168
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4012232030149188
Last 10 Games
WLOTWOTL SOWSOL
260011
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2826824.11%2937375.09%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
847884798458711010017
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
842172248.90%909183349.59%651138247.11%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
167793117347451438722


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2022-10-288Senators4Admirals5BWBoxScore
4 - 2022-10-3019Admirals2Senators3ALBoxScore
6 - 2022-11-0129Admirals2Icehogs7ALR1BoxScore
9 - 2022-11-0445Monsters4Admirals6BWR1BoxScore
12 - 2022-11-0759Icehogs2Admirals8BWBoxScore
14 - 2022-11-0972Admirals4Monsters3AWR1BoxScore
16 - 2022-11-1186Griffins7Admirals5BLBoxScore
17 - 2022-11-1288Admirals6Devils5AWBoxScore
21 - 2022-11-16114Senators6Admirals7BWXXBoxScore
23 - 2022-11-18125Admirals4Senators5ALBoxScore
26 - 2022-11-21143Marlies1Admirals5BWBoxScore
30 - 2022-11-25158Devils4Admirals3BLBoxScore
32 - 2022-11-27169Admirals1Icehogs8ALR1BoxScore
34 - 2022-11-29179Admirals4Devils3AWXBoxScore
36 - 2022-12-01190Marlies2Admirals1BLXBoxScore
38 - 2022-12-03203Admirals5Senators2AWBoxScore
42 - 2022-12-07220Rampage4Admirals3BLBoxScore
44 - 2022-12-09228Admirals3Devils5ALBoxScore
46 - 2022-12-11240Admirals2Rampage4ALBoxScore
48 - 2022-12-13251Wolves5Admirals6BWXBoxScore
52 - 2022-12-17268Senators2Admirals7BWBoxScore
55 - 2022-12-20282Admirals4Heat7ALBoxScore
58 - 2022-12-23298Marlies4Admirals3BLBoxScore
60 - 2022-12-25307Admirals1Senators5ALBoxScore
63 - 2022-12-28321Sound Tigers2Admirals4BWBoxScore
66 - 2022-12-31338Admirals1Bears4ALBoxScore
68 - 2023-01-02349Condors7Admirals1BLBoxScore
72 - 2023-01-06370Moose2Admirals5BWBoxScore
76 - 2023-01-10388Admirals6Punishers7ALBoxScore
77 - 2023-01-11400Phantoms7Admirals5BLBoxScore
81 - 2023-01-15416Admirals7Little Stars1AWBoxScore
82 - 2023-01-16425Bears7Admirals4BLBoxScore
86 - 2023-01-20446Eagles3Admirals6BWBoxScore
91 - 2023-01-25471Penguins2Admirals5BWBoxScore
93 - 2023-01-27481Admirals3Wolves5ALBoxScore
95 - 2023-01-29491Admirals3Crunch2AWBoxScore
96 - 2023-01-30499Rocket8Admirals6BLBoxScore
99 - 2023-02-02514Admirals5Griffins1AWBoxScore
101 - 2023-02-04522Admirals4Comets2AWBoxScore
102 - 2023-02-05530Griffins1Admirals2BWXXBoxScore
105 - 2023-02-08549Devils7Admirals2BLBoxScore
109 - 2023-02-12571Admirals4Barracuda3AWXXBoxScore
110 - 2023-02-13578Rocket4Admirals5BWBoxScore
115 - 2023-02-18601Wolfpack5Admirals3BLBoxScore
117 - 2023-02-20610Admirals4Marlies7ALBoxScore
121 - 2023-02-24626Admirals3Thunderbirds5ALBoxScore
122 - 2023-02-25631Little Stars3Admirals4BWXXBoxScore
126 - 2023-03-01654Comets6Admirals4BLBoxScore
128 - 2023-03-03666Admirals8Rocket5AWBoxScore
130 - 2023-03-05675Admirals3Condors4ALBoxScore
131 - 2023-03-06684Barracuda6Admirals3BLBoxScore
135 - 2023-03-10704Admirals4Reign6ALBoxScore
136 - 2023-03-11710Thunderbirds7Admirals6BLXXBoxScore
140 - 2023-03-15731Monsters5Admirals4BLXXR1BoxScore
142 - 2023-03-17743Admirals4Phantoms3AWXXBoxScore
145 - 2023-03-20756Admirals4Reign6ALBoxScore
146 - 2023-03-21760Monsters1Admirals5BWR1BoxScore
151 - 2023-03-26783Icehogs4Admirals2BLBoxScore
153 - 2023-03-28797Admirals3Moose6ALBoxScore
155 - 2023-03-30810Crunch3Admirals2BLBoxScore
159 - 2023-04-03826Admirals5Wolfpack4AWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
161 - 2023-04-05835Punishers6Admirals2BLBoxScore
163 - 2023-04-07843Admirals4Monsters2AWR1BoxScore
166 - 2023-04-10862Heat6Admirals4BLBoxScore
167 - 2023-04-11866Admirals3Sound Tigers2AWBoxScore
170 - 2023-04-14881Admirals6Condors5AWXBoxScore
171 - 2023-04-15889Little Stars5Admirals1BLBoxScore
174 - 2023-04-18899Admirals4Penguins7ALBoxScore
176 - 2023-04-20913Icehogs1Admirals4BWR1BoxScore
178 - 2023-04-22920Admirals3Icehogs5ALBoxScore
183 - 2023-04-27941Barracuda4Admirals2BLBoxScore
184 - 2023-04-28950Admirals5Comets8ALBoxScore
187 - 2023-05-01966Heat1Admirals3BWBoxScore
190 - 2023-05-04978Admirals2Barracuda6ALBoxScore
192 - 2023-05-06986Admirals5Moose4AWXXBoxScore
194 - 2023-05-08995Reign3Admirals2BLXXBoxScore
197 - 2023-05-111008Admirals4Phantoms3AWBoxScore
202 - 2023-05-161020Thunderbirds7Admirals2BLBoxScore
203 - 2023-05-171029Admirals3Monsters6ALR1BoxScore
205 - 2023-05-191039Admirals1Eagles12ALBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance74,98037,043
Attendance PCT93.73%92.61%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2801 - 93.35% 83,473$3,338,938$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,094,047$ 2,283,500$ 2,098,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
11,085$ 2,232,296$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 15,211$ 0$




Admirals Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Admirals Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Admirals Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Admirals Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Admirals Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA