Out of Date Version of the STHS! Please update your version!
Login

Monsters
GP: 80 | W: 40 | L: 34 | OTL: 6 | P: 86
GF: 356 | GA: 340 | PP%: 23.03% | PK%: 77.63%
GM : Francois Juteau | Morale : 42 | Team Overall : 65
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Monsters
40-34-6, 86pts
2
FINAL
7 Condors
44-26-10, 98pts
Team Stats
W1StreakL1
19-18-3Home Record21-13-6
21-16-3Away Record23-13-4
6-4-0Last 10 Games8-1-1
4.45Goals Per Game4.00
4.25Goals Against Per Game3.83
23.03%Power Play Percentage18.85%
77.63%Penalty Kill Percentage82.56%
Admirals
34-42-4, 72pts
3
FINAL
6 Monsters
40-34-6, 86pts
Team Stats
L3StreakW1
17-19-4Home Record19-18-3
17-23-0Away Record21-16-3
3-6-1Last 10 Games6-4-0
3.83Goals Per Game4.45
4.45Goals Against Per Game4.25
24.11%Power Play Percentage23.03%
75.09%Penalty Kill Percentage77.63%
Team Leaders
Goals
Zac Dalpe
65
Assists
Zac Dalpe
88
Points
Zac Dalpe
153
Plus/Minus
Jakub Vrana
12
Wins
Connor Hellebyuk
24
Save Percentage
Connor Hellebyuk
0.876

Team Stats
Goals For
356
4.45 GFG
Shots For
2749
34.36 Avg
Power Play Percentage
23.0%
73 GF
Offensive Zone Start
36.2%
Goals Against
340
4.25 GAA
Shots Against
2716
33.95 Avg
Penalty Kill Percentage
77.6%%
66 GA
Defensive Zone Start
35.7%
Team Info

General ManagerFrancois Juteau
CoachGuy Carbonneau
DivisionJohn-Ahearne
ConferenceRobert-Lebel
CaptainZac Dalpe
Assistant #1
Assistant #2Jared Knight


Arena Info

Capacity3,000
Attendance2,784
Season Tickets300


Roster Info

Pro Team31
Farm Team21
Contract Limit52 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Zac Dalpe (C)X100.007135777269787877737565667969623062710281950,000$
2Justin Bailey (R)X100.007334856379747173777185586654445248700222990,000$
3Austin WatsonX100.007528796768707470706771636855503452670251550,000$
4Jakub Vrana (R)X100.006538737165737270736572697446455228670212650,000$
5Jared Knight (A)X100.006921726673727668727270666553503462670251700,000$
6Joakim NordstromX100.007945666868667671636969605851503659660251600,000$
7Ryan Fitzgerald (R)X100.006743766670696874756367636648504562660234750,000$
8Marc Michaelis (R)X100.007139726862715767677168676148485644660221500,000$
9Trevor Moore (R)X100.007050797059726864766670577348485927660221500,000$
10Gerald Mayhew (R)X100.005642725762698076696079517755524463650251650,000$
11Richard Nejezchleb (R)X100.005746736567696463686674586047483748640232650,000$
12Vladimir Tkachev (R)X100.005444807157685961606173637049494725640222500,000$
13Carl Grundstrom (R)X100.006852846165706464646364636743457255640201500,000$
14Maxim Mamin (R)X100.006134767159666964686567596445464946630224750,000$
15Nathan Noel (R)X100.006539725177746755667571496246484428630221500,000$
16Alexandre Texier (R)X100.004930727051665668596566547240407727610182500,000$
17Alex Schoenborn (R)X100.006648625970587161566568464843434426600211650,000$
18Francis Perron (R)X100.005837696046556967707667376043434928600212550,000$
19Daniel Sprong (R)X100.005039746370686357595472416942425424590202650,000$
20Aaron NessX100.007139727472777272527570686368532933700271950,000$
21Dillon Heatherington (R)X100.006824866767707665496958815955454562690223800,000$
22Matt Grzelcyk (R)X100.006926717863687173477552705756494343670231800,000$
23Jesse Graham (R)X100.005543718066616768497059704945453837650231650,000$
24Victor Mete (R)X100.005036747759607174417561654942427129630191500,000$
25Tarmo Reunanen (R)X100.005841746664516058376653695443425738610191500,000$
Scratches
1Zachary Senyshyn (R)X100.004535726849555859616153487142425520560202500,000$
2Cameron Hughes (R)X100.005228665168595857585351444944445220530211550,000$
3Collin MillerX100.007228747065717175526670775767513628700251925,000$
TEAM AVERAGE100.00633774676567686762676760635047484064
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Connor Hellebyuk100.00737374707069676972807762503741700241900,000$
2Maxime Lagace (R)100.00646265786775767470656647504561690242500,000$
Scratches
1Peyton Jones (R)100.00556462536060635258615541416120580211500,000$
TEAM AVERAGE100.0064666767666869656769665047484166
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Guy Carbonneau75915889437754CAN522750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Zac DalpeMonsters (Clb)C806588153958016220533913823519.17%54183922.991332455026844892355251.91%29635441041.66270001584
2Austin WatsonMonsters (Clb)RW804234761340127922297411618.34%43165720.72149232526310151136246.11%1673024010.9227000273
3Jared KnightMonsters (Clb)C80274067-2340146136200448513.50%28134016.7666122417611271232050.17%8653121001.0012000133
4Joakim NordstromMonsters (Clb)LW802837656635135901766712915.91%24113014.13371014990001734050.00%742824001.1511010413
5Justin BaileyMonsters (Clb)LW57202949-710072681796010811.17%27114220.04812202416901131462048.48%992814000.8637000143
6Gerald MayhewMonsters (Clb)RW80252247-73758867141408817.73%21121515.20571219194000003136.96%462520000.7700001135
7Aaron NessMonsters (Clb)D68538431271512912714565803.45%117182126.78268202340226207100.00%05257000.4701100021
8Ryan FitzgeraldMonsters (Clb)C802319423607989188599312.23%1887710.9700002000073052.55%411159000.9601000121
9Dillon HeatheringtonMonsters (Clb)D8062935-25608513810436465.77%110180322.543912132181011207000.00%02160100.3900000011
10Matt GrzelcykMonsters (Clb)D7162935-326066988538327.06%63123917.453588112000297000.00%01135000.5600000001
11Marc MichaelisMonsters (Clb)LW63161834-113209485117457913.68%2493914.9133671001012393153.66%411711010.7200000111
12Jakub VranaMonsters (Clb)LW64171633121808057133437312.78%2176511.960446720003681040.74%272915000.8611000201
13Collin MillerMonsters (Clb)D75323261230074977126374.23%79132217.631234570114270000.00%02052000.3900000010
14Trevor MooreMonsters (Clb)LW541115260160413843163325.58%135199.62101219000060053.78%11954011.0001000111
15Richard NejezchlebMonsters (Clb)RW671211231220404689365613.48%1675011.2000000000041157.14%141711000.6100000012
16Carl GrundstromMonsters (Clb)RW7561218780564345264313.33%247139.51000211000030047.06%1757000.5000000100
17Jesse GrahamMonsters (Clb)D39312151016025643720148.11%3361215.69112462011049200.00%01226000.4900000001
18Morgan RiellyBlue JacketsD233912-170018452514712.00%3649021.34134665101153000.00%01114000.4900000001
19Maxim MaminMonsters (Clb)C653811-512033183915267.69%83044.68000030000110045.22%11551000.7200000001
20Tarmo ReunanenMonsters (Clb)D6518921602447279173.70%3169310.6700001000033100.00%0032000.2600000000
21Vladimir TkachevMonsters (Clb)LW25437-20010112591516.00%41767.0500001000010150.00%655000.7900000000
22Victor MeteMonsters (Clb)D53167316017413214123.13%3260511.4200001011023000.00%0823000.2300000001
23Francis PerronMonsters (Clb)LW48426040882471316.67%11873.90000001012511040.00%1551000.6400000000
24Nathan NoelMonsters (Clb)C483256100189204815.00%52244.6700002000031046.25%8011000.4500000001
25Ben HuttonBlue JacketsD60331601178960.00%917429.04000225000021000.00%078000.3400000000
26Alexandre TexierMonsters (Clb)RW50202-460663113156.45%21663.3200004000050060.00%531000.2400000000
27Daniel SprongMonsters (Clb)RW22101-2006240125.00%21034.7000000000010050.00%241000.1900000000
28Alex SchoenbornMonsters (Clb)RW43000-200230110.00%0400.95000030000250038.46%1301000.00%00000000
29Cameron HughesMonsters (Clb)C33000-100000000.00%0100.3100000000080050.00%400000.00%00000000
30Ryan DzingelBlue JacketsLW1000000202110.00%02222.0200002000030050.00%610000.00%00000000
31Zachary SenyshynMonsters (Clb)RW38000100231010.00%1360.95000000000000100.00%100000.00%00000000
Team Total or Average1713337513850-255715165617402559929147013.17%8462292213.3864106170230217910112146189536850.94%5090450519170.741028111303535
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Connor HellebyukMonsters (Clb)56241570.8764.232878202031633850300.647174734230
2Maxime LagaceMonsters (Clb)35131220.8614.65172800134967475000.667122456001
Team Total or Average91372790.8704.394607203372600132530297190231


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aaron NessMonsters (Clb)D271990-01-01No182 Lbs5 ft10NoNoNo1Pro & Farm950,000$0$0$No
Alex SchoenbornMonsters (Clb)RW211996-01-01Yes205 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLink
Alexandre TexierMonsters (Clb)RW181999-01-01Yes186 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Austin WatsonMonsters (Clb)RW251992-01-01No193 Lbs6 ft4NoNoNo1Pro & Farm550,000$0$0$No
Cameron HughesMonsters (Clb)C211996-01-01Yes195 Lbs5 ft11NoNoNo1Pro & Farm550,000$0$0$NoLink
Carl GrundstromMonsters (Clb)RW201997-01-01Yes194 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$NoLink
Collin MillerMonsters (Clb)D251992-01-01No175 Lbs6 ft0NoNoNo1Pro & Farm925,000$0$0$NoLink
Connor HellebyukMonsters (Clb)G241993-01-01No185 Lbs6 ft4NoNoNo1Pro & Farm900,000$0$0$NoLink
Daniel SprongMonsters (Clb)RW201997-01-01Yes191 Lbs5 ft11NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Dillon HeatheringtonMonsters (Clb)D221995-01-01Yes185 Lbs6 ft4NoNoNo3Pro & Farm800,000$0$0$No900,000$975,000$Link
Francis PerronMonsters (Clb)LW211996-01-01Yes178 Lbs6 ft2NoNoNo2Pro & Farm550,000$0$0$No550,000$Link
Gerald MayhewMonsters (Clb)RW251992-01-01Yes161 Lbs6 ft4NoNoNo1Pro & Farm650,000$0$0$NoLink
Jakub VranaMonsters (Clb)LW211996-01-01Yes197 Lbs6 ft0NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Jared KnightMonsters (Clb)C251992-01-01No203 Lbs5 ft11NoNoNo1Pro & Farm700,000$0$0$No
Jesse GrahamMonsters (Clb)D231994-01-01Yes170 Lbs5 ft11NoNoNo1Pro & Farm650,000$0$0$No
Joakim NordstromMonsters (Clb)LW251992-01-01No189 Lbs6 ft1NoNoNo1Pro & Farm600,000$0$0$No
Justin BaileyMonsters (Clb)LW221995-01-01Yes185 Lbs6 ft0NoNoNo2Pro & Farm990,000$0$0$No990,000$Link
Marc MichaelisMonsters (Clb)LW221995-01-01Yes187 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$NoLink
Matt GrzelcykMonsters (Clb)D231994-01-01Yes171 Lbs5 ft9NoNoNo1Pro & Farm800,000$0$0$NoLink
Maxim MaminMonsters (Clb)C221995-01-01Yes185 Lbs6 ft1NoNoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$Link
Maxime LagaceMonsters (Clb)G241993-01-01Yes190 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Nathan NoelMonsters (Clb)C221995-01-01Yes209 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$NoLink
Peyton JonesMonsters (Clb)G211996-01-01Yes209 Lbs6 ft4NoNoNo1Pro & Farm500,000$0$0$NoLink
Richard NejezchlebMonsters (Clb)RW231994-01-01Yes187 Lbs5 ft11NoNoNo2Pro & Farm650,000$0$0$No650,000$Link
Ryan FitzgeraldMonsters (Clb)C231994-01-01Yes185 Lbs5 ft10NoNoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$Link
Tarmo ReunanenMonsters (Clb)D191998-01-01Yes179 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$NoLink
Trevor MooreMonsters (Clb)LW221995-01-01Yes174 Lbs5 ft10NoNoNo1Pro & Farm500,000$0$0$NoLink
Victor MeteMonsters (Clb)D191998-01-01Yes183 Lbs5 ft9NoNoNo1Pro & Farm500,000$0$0$NoLink
Vladimir TkachevMonsters (Clb)LW221995-01-01Yes165 Lbs5 ft10NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Zac DalpeMonsters (Clb)C281989-01-01No195 Lbs6 ft1NoNoNo1Pro & Farm950,000$0$0$No
Zachary SenyshynMonsters (Clb)RW201997-01-01Yes192 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3122.42187 Lbs6 ft01.55650,484$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Justin BaileyZac DalpeAustin Watson40122
2Jakub VranaJared KnightGerald Mayhew30122
3Marc MichaelisRyan FitzgeraldRichard Nejezchleb20122
4Joakim NordstromMaxim MaminCarl Grundstrom10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Aaron NessDillon Heatherington40122
2Matt GrzelcykJesse Graham30122
3Victor MeteTarmo Reunanen20122
4Aaron NessDillon Heatherington10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Justin BaileyZac DalpeAustin Watson60122
2Jakub VranaJared KnightGerald Mayhew40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Aaron NessDillon Heatherington60122
2Matt GrzelcykJesse Graham40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Zac DalpeJustin Bailey60122
2Austin WatsonJakub Vrana40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Aaron NessDillon Heatherington60122
2Matt GrzelcykJesse Graham40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Zac Dalpe60122Aaron NessDillon Heatherington60122
2Justin Bailey40122Matt GrzelcykJesse Graham40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Zac DalpeJustin Bailey60122
2Austin WatsonJakub Vrana40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Aaron NessDillon Heatherington60122
2Matt GrzelcykJesse Graham40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Justin BaileyZac DalpeAustin WatsonAaron NessDillon Heatherington
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Justin BaileyZac DalpeAustin WatsonAaron NessDillon Heatherington
Extra Forwards
Normal PowerPlayPenalty Kill
Trevor Moore, Vladimir Tkachev, Nathan NoelTrevor Moore, Vladimir TkachevNathan Noel
Extra Defensemen
Normal PowerPlayPenalty Kill
Victor Mete, Tarmo Reunanen, Matt GrzelcykVictor MeteTarmo Reunanen, Matt Grzelcyk
Penalty Shots
Zac Dalpe, Justin Bailey, Austin Watson, Jakub Vrana, Jared Knight
Goalie
#1 : Maxime Lagace, #2 : Connor Hellebyuk


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals614000102126-53120000011110302000101015-540.33321385910106128116920794292486639191725713925312.00%27677.78%0928184650.27%939182051.59%736143851.18%171195716887541449725
2Barracuda32100000161421010000045-122000000129340.6671629450010612811691239429248663910341125010550.00%6266.67%0928184650.27%939182051.59%736143851.18%171195716887541449725
3Bears20200000211-91010000014-31010000017-600.000246001061281169619429248663983221454200.00%7271.43%0928184650.27%939182051.59%736143851.18%171195716887541449725
4Comets2200000014311110000007251100000071641.00014223600106128116977942924866396022124712216.67%60100.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
5Condors403000101321-81010000035-2302000101016-620.2501320330010612811691489429248663914344267318211.11%13376.92%0928184650.27%939182051.59%736143851.18%171195716887541449725
6Crunch2110000011921010000035-21100000084420.5001115260010612811697694292486639592220386233.33%100100.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
7Devils311001001921-21010000059-4210001001412230.500192746001061281169107942924866391083332718225.00%16475.00%2928184650.27%939182051.59%736143851.18%171195716887541449725
8Eagles2020000059-41010000035-21010000024-200.00058130010612811697294292486639821812439111.11%6350.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
9Griffins312000001517-221100000121201010000035-220.333152641001061281169119942924866391052620698225.00%10370.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
10Heat3200000117116210000019901100000082650.8331727440010612811699194292486639912724767228.57%12283.33%0928184650.27%939182051.59%736143851.18%171195716887541449725
11Icehogs622001102425-1301001101416-232100000109170.58324396300106128116921394292486639225516412326623.08%32971.88%2928184650.27%939182051.59%736143851.18%171195716887541449725
12Little Stars210010001248100010004311100000081741.00012193100106128116967942924866396018124113323.08%6350.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
13Marlies311000011416-220100001912-31100000054130.500142438001061281169108942924866399323147512325.00%7357.14%1928184650.27%939182051.59%736143851.18%171195716887541449725
14Moose3300000014592200000010371100000042261.0001425390010612811691099429248663910033126516531.25%60100.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
15Penguins3110001015123110000009362010001069-340.6671524390010612811698094292486639100332982600.00%12283.33%1928184650.27%939182051.59%736143851.18%171195716887541449725
16Phantoms30300000614-81010000024-220200000410-600.000691500106128116982942924866391073025671317.69%11463.64%0928184650.27%939182051.59%736143851.18%171195716887541449725
17Punishers5320000022211312000001217-522000000104660.60022375900106128116916394292486639174504310324416.67%19668.42%1928184650.27%939182051.59%736143851.18%171195716887541449725
18Rampage3110100011101210010007521010000045-140.6671118290010612811699794292486639973718637228.57%90100.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
19Reign32100000911-21100000031221100000610-440.66791423001061281169105942924866391073828567114.29%140100.00%1928184650.27%939182051.59%736143851.18%171195716887541449725
20Rocket32100000141222200000012661010000026-440.667142640001061281169819429248663910628244711327.27%12283.33%0928184650.27%939182051.59%736143851.18%171195716887541449725
21Senators7430000037307422000001921-232100000189980.571375996001061281169256942924866392248760130371232.43%30776.67%2928184650.27%939182051.59%736143851.18%171195716887541449725
22Sound Tigers20100100815-71010000039-61000010056-110.250811190010612811696594292486639812515407342.86%6266.67%0928184650.27%939182051.59%736143851.18%171195716887541449725
23Thunderbirds2200000016511110000009271100000073441.0001629450010612811698294292486639642110548450.00%5180.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
24Wolfpack30200001913-41010000045-12010000158-310.16791322001061281169102942924866399339145518422.22%7185.71%0928184650.27%939182051.59%736143851.18%171195716887541449725
25Wolves220000001257110000004311100000082641.0001220320010612811695894292486639602412537114.29%6183.33%0928184650.27%939182051.59%736143851.18%171195716887541449725
Total80343402343356340164016180211217917724018160023117716314860.538356583939101061281169274994292486639271686460917143177323.03%2956677.63%10928184650.27%939182051.59%736143851.18%171195716887541449725
_Since Last GM Reset80343402343356340164016180211217917724018160023117716314860.538356583939101061281169274994292486639271686460917143177323.03%2956677.63%10928184650.27%939182051.59%736143851.18%171195716887541449725
_Vs Conference47202100132200202-2241010001121081053231011000209297-5490.52120033653610106128116916429429248663915955003669701904523.68%1804177.22%6928184650.27%939182051.59%736143851.18%171195716887541449725
_Vs Division197900120828111035001104448-49440001038335190.5008213621810106128116967694292486639640210181392882123.86%892275.28%4928184650.27%939182051.59%736143851.18%171195716887541449725

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8086W135658393927492716864609171410
All Games
GPWLOTWOTL SOWSOLGFGA
8034342343356340
Home Games
GPWLOTWOTL SOWSOLGFGA
4016182112179177
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4018160231177163
Last 10 Games
WLOTWOTL SOWSOL
540010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3177323.03%2956677.63%10
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
942924866391061281169
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
928184650.27%939182051.59%736143851.18%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
171195716887541449725


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2022-10-2810Monsters5Icehogs4AWBoxScore
4 - 2022-10-3020Icehogs4Monsters2BLBoxScore
6 - 2022-11-0134Senators7Monsters5BLBoxScore
9 - 2022-11-0445Monsters4Admirals6ALBoxScore
12 - 2022-11-0760Monsters5Condors4AWXXBoxScore
14 - 2022-11-0972Admirals4Monsters3BLBoxScore
17 - 2022-11-1290Senators5Monsters6BWBoxScore
19 - 2022-11-1499Monsters7Senators1AWBoxScore
21 - 2022-11-16112Punishers8Monsters3BLBoxScore
23 - 2022-11-18128Monsters7Devils4AWBoxScore
26 - 2022-11-21141Monsters6Punishers1AWBoxScore
28 - 2022-11-23150Rocket4Monsters5BWBoxScore
32 - 2022-11-27168Marlies7Monsters5BLBoxScore
35 - 2022-11-30186Rampage3Monsters4BWBoxScore
37 - 2022-12-02197Monsters3Wolfpack4ALXXBoxScore
40 - 2022-12-05212Phantoms4Monsters2BLBoxScore
42 - 2022-12-07217Monsters2Icehogs3ALBoxScore
45 - 2022-12-10237Monsters4Moose2AWBoxScore
47 - 2022-12-12245Eagles5Monsters3BLBoxScore
51 - 2022-12-16264Heat3Monsters2BLXXBoxScore
54 - 2022-12-19280Monsters7Senators2AWBoxScore
57 - 2022-12-22293Barracuda5Monsters4BLBoxScore
62 - 2022-12-27315Penguins3Monsters9BWBoxScore
64 - 2022-12-29329Monsters1Phantoms3ALBoxScore
66 - 2022-12-31337Monsters8Little Stars1AWBoxScore
67 - 2023-01-01346Devils9Monsters5BLBoxScore
71 - 2023-01-05367Sound Tigers9Monsters3BLBoxScore
73 - 2023-01-07379Monsters3Phantoms7ALBoxScore
76 - 2023-01-10392Monsters2Rocket6ALBoxScore
77 - 2023-01-11399Little Stars3Monsters4BWXBoxScore
80 - 2023-01-14412Monsters2Wolfpack4ALBoxScore
82 - 2023-01-16422Monsters3Penguins2AWXXBoxScore
83 - 2023-01-17429Wolfpack5Monsters4BLBoxScore
88 - 2023-01-22450Marlies5Monsters4BLXXBoxScore
91 - 2023-01-25472Wolves3Monsters4BWBoxScore
93 - 2023-01-27482Monsters3Griffins5ALBoxScore
95 - 2023-01-29493Monsters8Barracuda6AWBoxScore
96 - 2023-01-30502Senators6Monsters4BLBoxScore
100 - 2023-02-03519Monsters8Crunch4AWBoxScore
102 - 2023-02-05528Monsters4Punishers3AWBoxScore
103 - 2023-02-06534Condors5Monsters3BLBoxScore
106 - 2023-02-09550Monsters7Thunderbirds3AWBoxScore
107 - 2023-02-10558Comets2Monsters7BWBoxScore
110 - 2023-02-13576Monsters3Icehogs2AWBoxScore
112 - 2023-02-15582Crunch5Monsters3BLBoxScore
116 - 2023-02-19605Senators3Monsters4BWBoxScore
120 - 2023-02-23623Monsters1Bears7ALBoxScore
122 - 2023-02-25633Heat6Monsters7BWBoxScore
124 - 2023-02-27643Monsters8Heat2AWBoxScore
127 - 2023-03-02658Griffins5Monsters4BLBoxScore
128 - 2023-03-03668Monsters5Sound Tigers6ALXBoxScore
131 - 2023-03-06682Monsters2Eagles4ALBoxScore
132 - 2023-03-07689Thunderbirds2Monsters9BWBoxScore
135 - 2023-03-10709Rocket2Monsters7BWBoxScore
138 - 2023-03-13722Monsters7Devils8ALXBoxScore
140 - 2023-03-15731Monsters5Admirals4AWXXBoxScore
141 - 2023-03-16740Bears4Monsters1BLBoxScore
146 - 2023-03-21760Monsters1Admirals5ALBoxScore
147 - 2023-03-22767Reign1Monsters3BWBoxScore
151 - 2023-03-26785Rampage2Monsters3BWXBoxScore
152 - 2023-03-27796Monsters4Barracuda3AWBoxScore
156 - 2023-03-31813Punishers6Monsters4BLBoxScore
158 - 2023-04-02822Monsters3Penguins7ALBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
161 - 2023-04-05836Monsters8Wolves2AWBoxScore
163 - 2023-04-07843Admirals4Monsters2BLBoxScore
166 - 2023-04-10860Monsters0Reign7ALBoxScore
167 - 2023-04-11868Icehogs5Monsters4BLXBoxScore
170 - 2023-04-14885Monsters6Reign3AWBoxScore
171 - 2023-04-15891Monsters7Comets1AWBoxScore
174 - 2023-04-18900Moose2Monsters3BWBoxScore
179 - 2023-04-23922Punishers3Monsters5BWBoxScore
181 - 2023-04-25931Monsters4Senators6ALBoxScore
183 - 2023-04-27946Moose1Monsters7BWBoxScore
185 - 2023-04-29959Monsters3Condors5ALBoxScore
188 - 2023-05-02969Monsters4Rampage5ALBoxScore
189 - 2023-05-03971Monsters5Marlies4AWBoxScore
191 - 2023-05-05981Icehogs7Monsters8BWXXBoxScore
196 - 2023-05-101003Griffins7Monsters8BWBoxScore
197 - 2023-05-111006Monsters2Condors7ALBoxScore
203 - 2023-05-171029Admirals3Monsters6BWBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance74,96936,405
Attendance PCT93.71%91.01%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2784 - 92.81% 83,212$3,328,491$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,798,129$ 2,016,500$ 1,926,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,789$ 2,036,911$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 13,430$ 0$




Monsters Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA