Version obsolète du STHS! Veuillez mettre à jour votre version!
Connexion

Monsters
GP: 80 | W: 40 | L: 34 | OTL: 6 | P: 86
GF: 356 | GA: 340 | PP%: 23.03% | PK%: 77.63%
DG: Francois Juteau | Morale : 42 | Moyenne d’équipe : 65
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Monsters
40-34-6, 86pts
2
FINAL
7 Condors
44-26-10, 98pts
Team Stats
W1StreakL1
19-18-3Home Record21-13-6
21-16-3Away Record23-13-4
6-4-0Last 10 Games8-1-1
4.45Buts par match 4.00
4.25Buts contre par match 3.83
23.03%Pourcentage en avantage numérique18.85%
77.63%Pourcentage en désavantage numérique82.56%
Admirals
34-42-4, 72pts
3
FINAL
6 Monsters
40-34-6, 86pts
Team Stats
L3StreakW1
17-19-4Home Record19-18-3
17-23-0Away Record21-16-3
3-6-1Last 10 Games6-4-0
3.83Buts par match 4.45
4.45Buts contre par match 4.25
24.11%Pourcentage en avantage numérique23.03%
75.09%Pourcentage en désavantage numérique77.63%
Meneurs d'équipe
Buts
Zac Dalpe
65
Passes
Zac Dalpe
88
Points
Zac Dalpe
153
Plus/Moins
Jakub Vrana
12
Victoires
Connor Hellebyuk
24
Pourcentage d’arrêts
Connor Hellebyuk
0.876

Statistiques d’équipe
Buts pour
356
4.45 GFG
Tirs pour
2749
34.36 Avg
Pourcentage en avantage numérique
23.0%
73 GF
Début de zone offensive
36.2%
Buts contre
340
4.25 GAA
Tirs contre
2716
33.95 Avg
Pourcentage en désavantage numérique
77.6%%
66 GA
Début de la zone défensive
35.7%
Informations de l'équipe

Directeur généralFrancois Juteau
EntraîneurGuy Carbonneau
DivisionJohn-Ahearne
ConférenceRobert-Lebel
CapitaineZac Dalpe
Assistant #1
Assistant #2Jared Knight


Informations de l’aréna

Capacité3,000
Assistance2,784
Billets de saison300


Informations de la formation

Équipe Pro31
Équipe Mineure21
Limite contact 52 / 250
Espoirs0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Zac Dalpe (C)X100.007135777269787877737565667969623062710281950,000$
2Justin Bailey (R)X100.007334856379747173777185586654445248700222990,000$
3Austin WatsonX100.007528796768707470706771636855503452670251550,000$
4Jakub Vrana (R)X100.006538737165737270736572697446455228670212650,000$
5Jared Knight (A)X100.006921726673727668727270666553503462670251700,000$
6Joakim NordstromX100.007945666868667671636969605851503659660251600,000$
7Ryan Fitzgerald (R)X100.006743766670696874756367636648504562660234750,000$
8Marc Michaelis (R)X100.007139726862715767677168676148485644660221500,000$
9Trevor Moore (R)X100.007050797059726864766670577348485927660221500,000$
10Gerald Mayhew (R)X100.005642725762698076696079517755524463650251650,000$
11Richard Nejezchleb (R)X100.005746736567696463686674586047483748640232650,000$
12Vladimir Tkachev (R)X100.005444807157685961606173637049494725640222500,000$
13Carl Grundstrom (R)X100.006852846165706464646364636743457255640201500,000$
14Maxim Mamin (R)X100.006134767159666964686567596445464946630224750,000$
15Nathan Noel (R)X100.006539725177746755667571496246484428630221500,000$
16Alexandre Texier (R)X100.004930727051665668596566547240407727610182500,000$
17Alex Schoenborn (R)X100.006648625970587161566568464843434426600211650,000$
18Francis Perron (R)X100.005837696046556967707667376043434928600212550,000$
19Daniel Sprong (R)X100.005039746370686357595472416942425424590202650,000$
20Aaron NessX100.007139727472777272527570686368532933700271950,000$
21Dillon Heatherington (R)X100.006824866767707665496958815955454562690223800,000$
22Matt Grzelcyk (R)X100.006926717863687173477552705756494343670231800,000$
23Jesse Graham (R)X100.005543718066616768497059704945453837650231650,000$
24Victor Mete (R)X100.005036747759607174417561654942427129630191500,000$
25Tarmo Reunanen (R)X100.005841746664516058376653695443425738610191500,000$
Rayé
1Zachary Senyshyn (R)X100.004535726849555859616153487142425520560202500,000$
2Cameron Hughes (R)X100.005228665168595857585351444944445220530211550,000$
3Collin MillerX100.007228747065717175526670775767513628700251925,000$
MOYENNE D’ÉQUIPE100.00633774676567686762676760635047484064
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Connor Hellebyuk100.00737374707069676972807762503741700241900,000$
2Maxime Lagace (R)100.00646265786775767470656647504561690242500,000$
Rayé
1Peyton Jones (R)100.00556462536060635258615541416120580211500,000$
MOYENNE D’ÉQUIPE100.0064666767666869656769665047484166
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Guy Carbonneau75915889437754CAN522750,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Zac DalpeMonsters (Clb)C806588153958016220533913823519.17%54183922.991332455026844892355251.91%29635441041.66270001584
2Austin WatsonMonsters (Clb)RW804234761340127922297411618.34%43165720.72149232526310151136246.11%1673024010.9227000273
3Jared KnightMonsters (Clb)C80274067-2340146136200448513.50%28134016.7666122417611271232050.17%8653121001.0012000133
4Joakim NordstromMonsters (Clb)LW802837656635135901766712915.91%24113014.13371014990001734050.00%742824001.1511010413
5Justin BaileyMonsters (Clb)LW57202949-710072681796010811.17%27114220.04812202416901131462048.48%992814000.8637000143
6Gerald MayhewMonsters (Clb)RW80252247-73758867141408817.73%21121515.20571219194000003136.96%462520000.7700001135
7Aaron NessMonsters (Clb)D68538431271512912714565803.45%117182126.78268202340226207100.00%05257000.4701100021
8Ryan FitzgeraldMonsters (Clb)C802319423607989188599312.23%1887710.9700002000073052.55%411159000.9601000121
9Dillon HeatheringtonMonsters (Clb)D8062935-25608513810436465.77%110180322.543912132181011207000.00%02160100.3900000011
10Matt GrzelcykMonsters (Clb)D7162935-326066988538327.06%63123917.453588112000297000.00%01135000.5600000001
11Marc MichaelisMonsters (Clb)LW63161834-113209485117457913.68%2493914.9133671001012393153.66%411711010.7200000111
12Jakub VranaMonsters (Clb)LW64171633121808057133437312.78%2176511.960446720003681040.74%272915000.8611000201
13Collin MillerMonsters (Clb)D75323261230074977126374.23%79132217.631234570114270000.00%02052000.3900000010
14Trevor MooreMonsters (Clb)LW541115260160413843163325.58%135199.62101219000060053.78%11954011.0001000111
15Richard NejezchlebMonsters (Clb)RW671211231220404689365613.48%1675011.2000000000041157.14%141711000.6100000012
16Carl GrundstromMonsters (Clb)RW7561218780564345264313.33%247139.51000211000030047.06%1757000.5000000100
17Jesse GrahamMonsters (Clb)D39312151016025643720148.11%3361215.69112462011049200.00%01226000.4900000001
18Morgan RiellyBlue JacketsD233912-170018452514712.00%3649021.34134665101153000.00%01114000.4900000001
19Maxim MaminMonsters (Clb)C653811-512033183915267.69%83044.68000030000110045.22%11551000.7200000001
20Tarmo ReunanenMonsters (Clb)D6518921602447279173.70%3169310.6700001000033100.00%0032000.2600000000
21Vladimir TkachevMonsters (Clb)LW25437-20010112591516.00%41767.0500001000010150.00%655000.7900000000
22Victor MeteMonsters (Clb)D53167316017413214123.13%3260511.4200001011023000.00%0823000.2300000001
23Francis PerronMonsters (Clb)LW48426040882471316.67%11873.90000001012511040.00%1551000.6400000000
24Nathan NoelMonsters (Clb)C483256100189204815.00%52244.6700002000031046.25%8011000.4500000001
25Ben HuttonBlue JacketsD60331601178960.00%917429.04000225000021000.00%078000.3400000000
26Alexandre TexierMonsters (Clb)RW50202-460663113156.45%21663.3200004000050060.00%531000.2400000000
27Daniel SprongMonsters (Clb)RW22101-2006240125.00%21034.7000000000010050.00%241000.1900000000
28Alex SchoenbornMonsters (Clb)RW43000-200230110.00%0400.95000030000250038.46%1301000.00%00000000
29Cameron HughesMonsters (Clb)C33000-100000000.00%0100.3100000000080050.00%400000.00%00000000
30Ryan DzingelBlue JacketsLW1000000202110.00%02222.0200002000030050.00%610000.00%00000000
31Zachary SenyshynMonsters (Clb)RW38000100231010.00%1360.95000000000000100.00%100000.00%00000000
Statistiques d’équipe totales ou en moyenne1713337513850-255715165617402559929147013.17%8462292213.3864106170230217910112146189536850.94%5090450519170.741028111303535
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Connor HellebyukMonsters (Clb)56241570.8764.232878202031633850300.647174734230
2Maxime LagaceMonsters (Clb)35131220.8614.65172800134967475000.667122456001
Statistiques d’équipe totales ou en moyenne91372790.8704.394607203372600132530297190231


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Aaron NessMonsters (Clb)D271990-01-01No182 Lbs5 ft10NoNoNo1Pro & Farm950,000$0$0$No
Alex SchoenbornMonsters (Clb)RW211996-01-01Yes205 Lbs6 ft2NoNoNo1Pro & Farm650,000$0$0$NoLien
Alexandre TexierMonsters (Clb)RW181999-01-01Yes186 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Austin WatsonMonsters (Clb)RW251992-01-01No193 Lbs6 ft4NoNoNo1Pro & Farm550,000$0$0$No
Cameron HughesMonsters (Clb)C211996-01-01Yes195 Lbs5 ft11NoNoNo1Pro & Farm550,000$0$0$NoLien
Carl GrundstromMonsters (Clb)RW201997-01-01Yes194 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$NoLien
Collin MillerMonsters (Clb)D251992-01-01No175 Lbs6 ft0NoNoNo1Pro & Farm925,000$0$0$NoLien
Connor HellebyukMonsters (Clb)G241993-01-01No185 Lbs6 ft4NoNoNo1Pro & Farm900,000$0$0$NoLien
Daniel SprongMonsters (Clb)RW201997-01-01Yes191 Lbs5 ft11NoNoNo2Pro & Farm650,000$0$0$No650,000$Lien
Dillon HeatheringtonMonsters (Clb)D221995-01-01Yes185 Lbs6 ft4NoNoNo3Pro & Farm800,000$0$0$No900,000$975,000$Lien
Francis PerronMonsters (Clb)LW211996-01-01Yes178 Lbs6 ft2NoNoNo2Pro & Farm550,000$0$0$No550,000$Lien
Gerald MayhewMonsters (Clb)RW251992-01-01Yes161 Lbs6 ft4NoNoNo1Pro & Farm650,000$0$0$NoLien
Jakub VranaMonsters (Clb)LW211996-01-01Yes197 Lbs6 ft0NoNoNo2Pro & Farm650,000$0$0$No650,000$Lien
Jared KnightMonsters (Clb)C251992-01-01No203 Lbs5 ft11NoNoNo1Pro & Farm700,000$0$0$No
Jesse GrahamMonsters (Clb)D231994-01-01Yes170 Lbs5 ft11NoNoNo1Pro & Farm650,000$0$0$No
Joakim NordstromMonsters (Clb)LW251992-01-01No189 Lbs6 ft1NoNoNo1Pro & Farm600,000$0$0$No
Justin BaileyMonsters (Clb)LW221995-01-01Yes185 Lbs6 ft0NoNoNo2Pro & Farm990,000$0$0$No990,000$Lien
Marc MichaelisMonsters (Clb)LW221995-01-01Yes187 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$NoLien
Matt GrzelcykMonsters (Clb)D231994-01-01Yes171 Lbs5 ft9NoNoNo1Pro & Farm800,000$0$0$NoLien
Maxim MaminMonsters (Clb)C221995-01-01Yes185 Lbs6 ft1NoNoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$Lien
Maxime LagaceMonsters (Clb)G241993-01-01Yes190 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Nathan NoelMonsters (Clb)C221995-01-01Yes209 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$NoLien
Peyton JonesMonsters (Clb)G211996-01-01Yes209 Lbs6 ft4NoNoNo1Pro & Farm500,000$0$0$NoLien
Richard NejezchlebMonsters (Clb)RW231994-01-01Yes187 Lbs5 ft11NoNoNo2Pro & Farm650,000$0$0$No650,000$Lien
Ryan FitzgeraldMonsters (Clb)C231994-01-01Yes185 Lbs5 ft10NoNoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$Lien
Tarmo ReunanenMonsters (Clb)D191998-01-01Yes179 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$NoLien
Trevor MooreMonsters (Clb)LW221995-01-01Yes174 Lbs5 ft10NoNoNo1Pro & Farm500,000$0$0$NoLien
Victor MeteMonsters (Clb)D191998-01-01Yes183 Lbs5 ft9NoNoNo1Pro & Farm500,000$0$0$NoLien
Vladimir TkachevMonsters (Clb)LW221995-01-01Yes165 Lbs5 ft10NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Zac DalpeMonsters (Clb)C281989-01-01No195 Lbs6 ft1NoNoNo1Pro & Farm950,000$0$0$No
Zachary SenyshynMonsters (Clb)RW201997-01-01Yes192 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
3122.42187 Lbs6 ft01.55650,484$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Justin BaileyZac DalpeAustin Watson40122
2Jakub VranaJared KnightGerald Mayhew30122
3Marc MichaelisRyan FitzgeraldRichard Nejezchleb20122
4Joakim NordstromMaxim MaminCarl Grundstrom10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Aaron NessDillon Heatherington40122
2Matt GrzelcykJesse Graham30122
3Victor MeteTarmo Reunanen20122
4Aaron NessDillon Heatherington10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Justin BaileyZac DalpeAustin Watson60122
2Jakub VranaJared KnightGerald Mayhew40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Aaron NessDillon Heatherington60122
2Matt GrzelcykJesse Graham40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Zac DalpeJustin Bailey60122
2Austin WatsonJakub Vrana40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Aaron NessDillon Heatherington60122
2Matt GrzelcykJesse Graham40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Zac Dalpe60122Aaron NessDillon Heatherington60122
2Justin Bailey40122Matt GrzelcykJesse Graham40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Zac DalpeJustin Bailey60122
2Austin WatsonJakub Vrana40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Aaron NessDillon Heatherington60122
2Matt GrzelcykJesse Graham40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Justin BaileyZac DalpeAustin WatsonAaron NessDillon Heatherington
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Justin BaileyZac DalpeAustin WatsonAaron NessDillon Heatherington
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Trevor Moore, Vladimir Tkachev, Nathan NoelTrevor Moore, Vladimir TkachevNathan Noel
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Victor Mete, Tarmo Reunanen, Matt GrzelcykVictor MeteTarmo Reunanen, Matt Grzelcyk
Tirs de pénalité
Zac Dalpe, Justin Bailey, Austin Watson, Jakub Vrana, Jared Knight
Gardien
#1 : Maxime Lagace, #2 : Connor Hellebyuk


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals614000102126-53120000011110302000101015-540.33321385910106128116920794292486639191725713925312.00%27677.78%0928184650.27%939182051.59%736143851.18%171195716887541449725
2Barracuda32100000161421010000045-122000000129340.6671629450010612811691239429248663910341125010550.00%6266.67%0928184650.27%939182051.59%736143851.18%171195716887541449725
3Bears20200000211-91010000014-31010000017-600.000246001061281169619429248663983221454200.00%7271.43%0928184650.27%939182051.59%736143851.18%171195716887541449725
4Comets2200000014311110000007251100000071641.00014223600106128116977942924866396022124712216.67%60100.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
5Condors403000101321-81010000035-2302000101016-620.2501320330010612811691489429248663914344267318211.11%13376.92%0928184650.27%939182051.59%736143851.18%171195716887541449725
6Crunch2110000011921010000035-21100000084420.5001115260010612811697694292486639592220386233.33%100100.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
7Devils311001001921-21010000059-4210001001412230.500192746001061281169107942924866391083332718225.00%16475.00%2928184650.27%939182051.59%736143851.18%171195716887541449725
8Eagles2020000059-41010000035-21010000024-200.00058130010612811697294292486639821812439111.11%6350.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
9Griffins312000001517-221100000121201010000035-220.333152641001061281169119942924866391052620698225.00%10370.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
10Heat3200000117116210000019901100000082650.8331727440010612811699194292486639912724767228.57%12283.33%0928184650.27%939182051.59%736143851.18%171195716887541449725
11Icehogs622001102425-1301001101416-232100000109170.58324396300106128116921394292486639225516412326623.08%32971.88%2928184650.27%939182051.59%736143851.18%171195716887541449725
12Little Stars210010001248100010004311100000081741.00012193100106128116967942924866396018124113323.08%6350.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
13Marlies311000011416-220100001912-31100000054130.500142438001061281169108942924866399323147512325.00%7357.14%1928184650.27%939182051.59%736143851.18%171195716887541449725
14Moose3300000014592200000010371100000042261.0001425390010612811691099429248663910033126516531.25%60100.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
15Penguins3110001015123110000009362010001069-340.6671524390010612811698094292486639100332982600.00%12283.33%1928184650.27%939182051.59%736143851.18%171195716887541449725
16Phantoms30300000614-81010000024-220200000410-600.000691500106128116982942924866391073025671317.69%11463.64%0928184650.27%939182051.59%736143851.18%171195716887541449725
17Punishers5320000022211312000001217-522000000104660.60022375900106128116916394292486639174504310324416.67%19668.42%1928184650.27%939182051.59%736143851.18%171195716887541449725
18Rampage3110100011101210010007521010000045-140.6671118290010612811699794292486639973718637228.57%90100.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
19Reign32100000911-21100000031221100000610-440.66791423001061281169105942924866391073828567114.29%140100.00%1928184650.27%939182051.59%736143851.18%171195716887541449725
20Rocket32100000141222200000012661010000026-440.667142640001061281169819429248663910628244711327.27%12283.33%0928184650.27%939182051.59%736143851.18%171195716887541449725
21Senators7430000037307422000001921-232100000189980.571375996001061281169256942924866392248760130371232.43%30776.67%2928184650.27%939182051.59%736143851.18%171195716887541449725
22Sound Tigers20100100815-71010000039-61000010056-110.250811190010612811696594292486639812515407342.86%6266.67%0928184650.27%939182051.59%736143851.18%171195716887541449725
23Thunderbirds2200000016511110000009271100000073441.0001629450010612811698294292486639642110548450.00%5180.00%0928184650.27%939182051.59%736143851.18%171195716887541449725
24Wolfpack30200001913-41010000045-12010000158-310.16791322001061281169102942924866399339145518422.22%7185.71%0928184650.27%939182051.59%736143851.18%171195716887541449725
25Wolves220000001257110000004311100000082641.0001220320010612811695894292486639602412537114.29%6183.33%0928184650.27%939182051.59%736143851.18%171195716887541449725
Total80343402343356340164016180211217917724018160023117716314860.538356583939101061281169274994292486639271686460917143177323.03%2956677.63%10928184650.27%939182051.59%736143851.18%171195716887541449725
_Since Last GM Reset80343402343356340164016180211217917724018160023117716314860.538356583939101061281169274994292486639271686460917143177323.03%2956677.63%10928184650.27%939182051.59%736143851.18%171195716887541449725
_Vs Conference47202100132200202-2241010001121081053231011000209297-5490.52120033653610106128116916429429248663915955003669701904523.68%1804177.22%6928184650.27%939182051.59%736143851.18%171195716887541449725
_Vs Division197900120828111035001104448-49440001038335190.5008213621810106128116967694292486639640210181392882123.86%892275.28%4928184650.27%939182051.59%736143851.18%171195716887541449725

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8086W135658393927492716864609171410
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8034342343356340
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4016182112179177
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4018160231177163
Derniers 10 matchs
WLOTWOTL SOWSOL
540010
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
3177323.03%2956677.63%10
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
942924866391061281169
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
928184650.27%939182051.59%736143851.18%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
171195716887541449725


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
2 - 2022-10-2810Monsters5Icehogs4AWSommaire du match
4 - 2022-10-3020Icehogs4Monsters2BLSommaire du match
6 - 2022-11-0134Senators7Monsters5BLSommaire du match
9 - 2022-11-0445Monsters4Admirals6ALSommaire du match
12 - 2022-11-0760Monsters5Condors4AWXXSommaire du match
14 - 2022-11-0972Admirals4Monsters3BLSommaire du match
17 - 2022-11-1290Senators5Monsters6BWSommaire du match
19 - 2022-11-1499Monsters7Senators1AWSommaire du match
21 - 2022-11-16112Punishers8Monsters3BLSommaire du match
23 - 2022-11-18128Monsters7Devils4AWSommaire du match
26 - 2022-11-21141Monsters6Punishers1AWSommaire du match
28 - 2022-11-23150Rocket4Monsters5BWSommaire du match
32 - 2022-11-27168Marlies7Monsters5BLSommaire du match
35 - 2022-11-30186Rampage3Monsters4BWSommaire du match
37 - 2022-12-02197Monsters3Wolfpack4ALXXSommaire du match
40 - 2022-12-05212Phantoms4Monsters2BLSommaire du match
42 - 2022-12-07217Monsters2Icehogs3ALSommaire du match
45 - 2022-12-10237Monsters4Moose2AWSommaire du match
47 - 2022-12-12245Eagles5Monsters3BLSommaire du match
51 - 2022-12-16264Heat3Monsters2BLXXSommaire du match
54 - 2022-12-19280Monsters7Senators2AWSommaire du match
57 - 2022-12-22293Barracuda5Monsters4BLSommaire du match
62 - 2022-12-27315Penguins3Monsters9BWSommaire du match
64 - 2022-12-29329Monsters1Phantoms3ALSommaire du match
66 - 2022-12-31337Monsters8Little Stars1AWSommaire du match
67 - 2023-01-01346Devils9Monsters5BLSommaire du match
71 - 2023-01-05367Sound Tigers9Monsters3BLSommaire du match
73 - 2023-01-07379Monsters3Phantoms7ALSommaire du match
76 - 2023-01-10392Monsters2Rocket6ALSommaire du match
77 - 2023-01-11399Little Stars3Monsters4BWXSommaire du match
80 - 2023-01-14412Monsters2Wolfpack4ALSommaire du match
82 - 2023-01-16422Monsters3Penguins2AWXXSommaire du match
83 - 2023-01-17429Wolfpack5Monsters4BLSommaire du match
88 - 2023-01-22450Marlies5Monsters4BLXXSommaire du match
91 - 2023-01-25472Wolves3Monsters4BWSommaire du match
93 - 2023-01-27482Monsters3Griffins5ALSommaire du match
95 - 2023-01-29493Monsters8Barracuda6AWSommaire du match
96 - 2023-01-30502Senators6Monsters4BLSommaire du match
100 - 2023-02-03519Monsters8Crunch4AWSommaire du match
102 - 2023-02-05528Monsters4Punishers3AWSommaire du match
103 - 2023-02-06534Condors5Monsters3BLSommaire du match
106 - 2023-02-09550Monsters7Thunderbirds3AWSommaire du match
107 - 2023-02-10558Comets2Monsters7BWSommaire du match
110 - 2023-02-13576Monsters3Icehogs2AWSommaire du match
112 - 2023-02-15582Crunch5Monsters3BLSommaire du match
116 - 2023-02-19605Senators3Monsters4BWSommaire du match
120 - 2023-02-23623Monsters1Bears7ALSommaire du match
122 - 2023-02-25633Heat6Monsters7BWSommaire du match
124 - 2023-02-27643Monsters8Heat2AWSommaire du match
127 - 2023-03-02658Griffins5Monsters4BLSommaire du match
128 - 2023-03-03668Monsters5Sound Tigers6ALXSommaire du match
131 - 2023-03-06682Monsters2Eagles4ALSommaire du match
132 - 2023-03-07689Thunderbirds2Monsters9BWSommaire du match
135 - 2023-03-10709Rocket2Monsters7BWSommaire du match
138 - 2023-03-13722Monsters7Devils8ALXSommaire du match
140 - 2023-03-15731Monsters5Admirals4AWXXSommaire du match
141 - 2023-03-16740Bears4Monsters1BLSommaire du match
146 - 2023-03-21760Monsters1Admirals5ALSommaire du match
147 - 2023-03-22767Reign1Monsters3BWSommaire du match
151 - 2023-03-26785Rampage2Monsters3BWXSommaire du match
152 - 2023-03-27796Monsters4Barracuda3AWSommaire du match
156 - 2023-03-31813Punishers6Monsters4BLSommaire du match
158 - 2023-04-02822Monsters3Penguins7ALSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
161 - 2023-04-05836Monsters8Wolves2AWSommaire du match
163 - 2023-04-07843Admirals4Monsters2BLSommaire du match
166 - 2023-04-10860Monsters0Reign7ALSommaire du match
167 - 2023-04-11868Icehogs5Monsters4BLXSommaire du match
170 - 2023-04-14885Monsters6Reign3AWSommaire du match
171 - 2023-04-15891Monsters7Comets1AWSommaire du match
174 - 2023-04-18900Moose2Monsters3BWSommaire du match
179 - 2023-04-23922Punishers3Monsters5BWSommaire du match
181 - 2023-04-25931Monsters4Senators6ALSommaire du match
183 - 2023-04-27946Moose1Monsters7BWSommaire du match
185 - 2023-04-29959Monsters3Condors5ALSommaire du match
188 - 2023-05-02969Monsters4Rampage5ALSommaire du match
189 - 2023-05-03971Monsters5Marlies4AWSommaire du match
191 - 2023-05-05981Icehogs7Monsters8BWXXSommaire du match
196 - 2023-05-101003Griffins7Monsters8BWSommaire du match
197 - 2023-05-111006Monsters2Condors7ALSommaire du match
203 - 2023-05-171029Admirals3Monsters6BWSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance74,96936,405
Assistance PCT93.71%91.01%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2784 - 92.81% 83,212$3,328,491$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
2,798,129$ 2,016,500$ 1,926,500$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
9,789$ 2,036,911$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 13,430$ 0$




Monsters Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA