Out of Date Version of the STHS! Please update your version!
Login

Little Stars
GP: 80 | W: 35 | L: 34 | OTL: 11 | P: 81
GF: 311 | GA: 322 | PP%: 18.15% | PK%: 79.66%
GM : Francois Cloutier | Morale : 26 | Team Overall : 65
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Marlies
42-34-4, 88pts
5
FINAL
8 Little Stars
35-34-11, 81pts
Team Stats
OTW1StreakL1
24-15-1Home Record15-19-6
18-19-3Away Record20-15-5
3-7-0Last 10 Games3-6-1
4.26Goals Per Game3.89
4.33Goals Against Per Game4.03
25.31%Power Play Percentage18.15%
73.98%Penalty Kill Percentage79.66%
Crunch
43-32-5, 91pts
6
FINAL
5 Little Stars
35-34-11, 81pts
Team Stats
W1StreakL1
19-18-3Home Record15-19-6
24-14-2Away Record20-15-5
7-2-1Last 10 Games3-6-1
4.25Goals Per Game3.89
4.11Goals Against Per Game4.03
24.00%Power Play Percentage18.15%
72.76%Penalty Kill Percentage79.66%
Team Leaders
Goals
Daniel O'regan
43
Assists
Daniel O'regan
84
Points
Daniel O'regan
127
Plus/Minus
Wiley Sherman
22
Wins
Connor Knapp
18
Save Percentage
Connor Knapp
0.897

Team Stats
Goals For
311
3.89 GFG
Shots For
2725
34.06 Avg
Power Play Percentage
18.2%
55 GF
Offensive Zone Start
37.6%
Goals Against
322
4.03 GAA
Shots Against
2591
32.39 Avg
Penalty Kill Percentage
79.7%%
59 GA
Defensive Zone Start
35.6%
Team Info

General ManagerFrancois Cloutier
CoachMike Yeo
DivisionGunther-Sabetzki
ConferenceLouis-Magnus
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,783
Season Tickets300


Roster Info

Pro Team33
Farm Team19
Contract Limit52 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Ilya Mikheyev (R)X100.007749817071787675777469637259544348710232950,000$
2Jordan LaValleeX100.006938786568737369658177626877721639710311900,000$
3Adam Tambellini (R)X100.006529787184787367717784526758483846700232600,000$
4Daniel O'regan (R)X100.006828807168797671748173596259483946700232900,000$
5Henrik Borgstrom (R)X100.007240777276717470747571646748426946690201500,000$
6Joakim Nygard (R)X100.005940817374656278737263638451544446680242900,000$
7Jason Dickinson (R)X100.006933767067677373746972577547465346670222500,000$
8Michael MerschX100.006935767472656572676177567258573517670251800,000$
9Alex Belzile (R)X100.006843837468707267646872566753514144670261750,000$
10Emile Poirier (R)X100.005633827277666763636681537247453834660231550,000$
11Shane Gersich (R)X100.006337806958687477787867425343435717650213700,000$
12Roman HorakX100.006239756959696769737065515249522446640261300,000$
13Matt Luff (R)X100.006635736573616160627183466845455846640201500,000$
14Justin Auger (R)X100.005829755867726760617476436947463946630231500,000$
15Radel Fazleev (R)X100.005134736756696664747669465243434317620212550,000$
16Jonathan Dahlen (R)X100.005424677046534972646066546643425317600201500,000$
17Filip Chytil (R)X100.006042746166645966566460496040408017590182500,000$
18Anton Cederholm (R)X100.007126846978747264527967825464464629720222750,000$
19Wiley Sherman (R)X100.006736877668827771677968746863465731720221950,000$
20Eric KnodelX100.007634727069806768467058705767592636690271900,000$
21Reece Willcox (R)X100.006629777668667567527160736556494241680232800,000$
22Tucker Poolman (R)X100.007233727470646368627154676052513946670242600,000$
23Ville Pokka (R)X100.006637766962656567416864665646474150650233600,000$
24Connor Mackey (R)X100.006346756168656766426157646045474826630212500,000$
25Lawrence Pilut (R)X100.006336695561596666446858575547445017600223500,000$
Scratches
1Joey Anderson (R)X100.005942676564546255625663585641416917580191500,000$
2Givani Smith (R)X100.006846595967507960506359524941416719580191500,000$
3Rudolfs Balcers (R)X100.005936695751635553615767506042425420570203250,000$
4Jean-Christophe Beaudin (R)X100.005024635647536165617060405242426120560203250,000$
5Yakov Trenin (R)X100.006434645864605364525655405842424620550204250,000$
TEAM AVERAGE100.00643675676667676762706757635148473365
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Michael Houser (R)100.00688252756672688182686255534946700253995,000$
2Danil Tarasov (R)100.00684565777348455766447940408411580182500,000$
Scratches
1Connor Knapp90.74725668777572666376697261552523700271950,000$
TEAM AVERAGE96.9169616276716460677560715249532766
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Mike Yeo61646867353766CAN412750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Daniel O'reganLittle Stars (Dal)C804384127-54201321553158419313.65%44178622.331225375226812351885352.55%25276332021.42150001045
2Ilya MikheyevLittle Stars (Dal)RW76345690-92401459729510819111.53%40161521.26918275125500051106247.22%1445226021.11212000665
3Jordan LaValleeLittle Stars (Dal)LW68424385-84001231062587916116.28%38155822.931113243323220282013452.31%2816031111.09110000474
4Adam TambelliniLittle Stars (Dal)LW803442766300130932428513314.05%33150618.83511162621901161791347.95%735421021.0107000453
5Joakim NygardLittle Stars (Dal)LW80253459710056882035813012.32%25100012.500222410001352147.92%483122011.1823000442
6Henrik BorgstromLittle Stars (Dal)C8030265604001491252116210014.22%28131716.47729212120006685347.39%10173626000.8514000414
7Jason DickinsonLittle Stars (Dal)C80242145102009274169609414.20%1794211.78000040002563145.76%4483515000.9600000022
8Alex BelzileLittle Stars (Dal)RW71172744-11208976125377813.60%23111115.6645916181000003150.98%513115000.7900000004
9Eric KnodelLittle Stars (Dal)D8042731-2176017313812248543.28%141215126.89347242860003236000.00%02877000.2911000211
10Reece WillcoxLittle Stars (Dal)D7922931-25957414610027392.00%96177522.48044132130110181000.00%02757000.3500100011
11Matt LuffLittle Stars (Dal)RW801018288400782773195113.70%1992111.51022043000001148.00%252112000.6100000101
12Wiley ShermanLittle Stars (Dal)D52225272218053897620332.63%72117622.63235101180004164000.00%03127000.4601000002
13Tucker PoolmanLittle Stars (Dal)D80422269680117917524245.33%80158819.8512361830001151100.00%02041100.3300000002
14Emile PoirierLittle Stars (Dal)LW63111425120173486355712.79%54847.69000250002500145.45%11246001.0300000110
15Roman HorakLittle Stars (Dal)C8081523-36055419137558.79%46187.7300000000041158.18%220157000.7400000021
16Justin AugerLittle Stars (Dal)RW808917-3100401951223515.69%96718.39000010000000246.15%1395000.5100000011
17Anton CederholmLittle Stars (Dal)D4221315-614053936931322.90%73113427.01123101670001127000.00%02740000.2600000020
18Ville PokkaLittle Stars (Dal)D801131413261058795928211.69%79119214.91011155000086000.00%0934100.2301101000
19Michael MerschLittle Stars (Dal)LW404610-74025238623484.65%113649.1100002000050137.50%8157000.5500000001
20Connor MackeyLittle Stars (Dal)D55246-2240244022899.09%4365111.8400004000041000.00%0516000.1800000000
21Joey AndersonLittle Stars (Dal)RW15101-260111042525.00%11067.070000000000100.00%200000.1900000000
22Filip ChytilLittle Stars (Dal)C11000-100000000.00%0111.030000000009000.00%100000.00%00000000
23Lawrence PilutLittle Stars (Dal)D17000-160772130.00%61307.690000000002000.00%015000.00%00000000
24Radel FazleevLittle Stars (Dal)C11000000001100.00%0201.83000000000160062.50%800000.00%00000000
25Shane GersichLittle Stars (Dal)LW11000-100000000.00%050.53000000000000100.00%100000.00%00000000
Team Total or Average1491308528836457715170116512735899154611.26%8872384215.9955941492672509347441920322450.72%4878594522380.70844201363739
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Connor KnappLittle Stars (Dal)35181020.8973.1917884095925475200.583122930212
2Michael HouserLittle Stars (Dal)53152090.8734.142696001861460749100.606334435211
3Danil TarasovLittle Stars (Dal)112400.8494.963752031205124110.00%0715000
Team Total or Average993534110.8803.854861603122590134841458080423


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam TambelliniLittle Stars (Dal)LW231994-01-01Yes185 Lbs6 ft4NoNoNo2Pro & Farm600,000$0$0$No600,000$Link
Alex BelzileLittle Stars (Dal)RW261991-01-01Yes197 Lbs5 ft10NoNoNo1Pro & Farm750,000$0$0$NoLink
Anton CederholmLittle Stars (Dal)D221995-01-01Yes185 Lbs6 ft2NoNoNo2Pro & Farm750,000$0$0$No750,000$Link
Connor Knapp (Out of Payroll)Little Stars (Dal)G271990-01-01No206 Lbs6 ft6NoNoNo1Pro & Farm950,000$0$0$Yes
Connor MackeyLittle Stars (Dal)D211996-01-01Yes190 Lbs6 ft2NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Daniel O'reganLittle Stars (Dal)C231994-01-01Yes169 Lbs5 ft9NoNoNo2Pro & Farm900,000$0$0$No950,000$Link
Danil TarasovLittle Stars (Dal)G181999-01-01Yes196 Lbs6 ft6NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Emile PoirierLittle Stars (Dal)LW231994-01-01Yes185 Lbs6 ft1NoNoNo1Pro & Farm550,000$0$0$NoLink
Eric KnodelLittle Stars (Dal)D271990-01-01No216 Lbs6 ft6NoNoNo1Pro & Farm900,000$0$0$No
Filip ChytilLittle Stars (Dal)C181999-01-01Yes210 Lbs6 ft3NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Givani SmithLittle Stars (Dal)RW191998-01-01Yes205 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$NoLink
Henrik BorgstromLittle Stars (Dal)C201997-01-01Yes198 Lbs6 ft3NoNoNo1Pro & Farm500,000$0$0$NoLink
Ilya MikheyevLittle Stars (Dal)RW231994-01-01Yes195 Lbs6 ft3NoNoNo2Pro & Farm950,000$0$0$No1,250,000$Link
Jason DickinsonLittle Stars (Dal)C221995-01-01Yes185 Lbs6 ft2NoNoNo2Pro & Farm500,000$0$0$No500,000$Link
Jean-Christophe BeaudinLittle Stars (Dal)C201997-01-01Yes196 Lbs6 ft1NoNoNo3Pro & Farm250,000$0$0$No250,000$250,000$Link
Joakim NygardLittle Stars (Dal)LW241993-01-01Yes179 Lbs6 ft0NoNoNo2Pro & Farm900,000$0$0$No950,000$Link
Joey AndersonLittle Stars (Dal)RW191998-01-01Yes190 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$NoLink
Jonathan DahlenLittle Stars (Dal)LW201997-01-01Yes181 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$NoLink
Jordan LaValleeLittle Stars (Dal)LW311986-01-01No225 Lbs6 ft3NoNoNo1Pro & Farm900,000$0$0$No
Justin AugerLittle Stars (Dal)RW231994-01-01Yes185 Lbs6 ft7NoNoNo1Pro & Farm500,000$0$0$NoLink
Lawrence PilutLittle Stars (Dal)D221995-01-01Yes194 Lbs5 ft11NoNoNo3Pro & Farm500,000$0$0$No550,000$550,000$Link
Matt LuffLittle Stars (Dal)RW201997-01-01Yes190 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$NoLink
Michael HouserLittle Stars (Dal)G251992-01-01Yes185 Lbs6 ft1NoNoNo3Pro & Farm995,000$0$0$No995,000$2,000,000$Link
Michael MerschLittle Stars (Dal)LW251992-01-01No218 Lbs6 ft2NoNoNo1Pro & Farm800,000$0$0$No
Radel FazleevLittle Stars (Dal)C211996-01-01Yes192 Lbs5 ft11NoNoNo2Pro & Farm550,000$0$0$No550,000$Link
Reece WillcoxLittle Stars (Dal)D231994-01-01Yes184 Lbs6 ft3NoNoNo2Pro & Farm800,000$0$0$No850,000$Link
Roman HorakLittle Stars (Dal)C261991-01-01No170 Lbs6 ft0NoNoNo1Pro & Farm300,000$0$0$No
Rudolfs BalcersLittle Stars (Dal)LW201997-01-01Yes180 Lbs5 ft11NoNoNo3Pro & Farm250,000$0$0$No250,000$300,000$Link
Shane GersichLittle Stars (Dal)LW211996-01-01Yes175 Lbs5 ft11NoNoNo3Pro & Farm700,000$0$0$No800,000$900,000$Link
Tucker PoolmanLittle Stars (Dal)D241993-01-01Yes185 Lbs6 ft2NoNoNo2Pro & Farm600,000$0$0$No600,000$Link
Ville PokkaLittle Stars (Dal)D231994-01-01Yes205 Lbs5 ft11NoNoNo3Pro & Farm600,000$0$0$No600,000$650,000$Link
Wiley ShermanLittle Stars (Dal)D221995-01-01Yes185 Lbs6 ft6NoNoNo1Pro & Farm950,000$0$0$NoLink
Yakov TreninLittle Stars (Dal)C201997-01-01Yes201 Lbs6 ft2NoNoNo4Pro & Farm250,000$0$0$No250,000$250,000$250,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3322.45192 Lbs6 ft21.82627,121$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jordan LaValleeDaniel O'reganIlya Mikheyev40122
2Adam TambelliniHenrik BorgstromAlex Belzile30122
3Joakim NygardJason DickinsonMatt Luff20122
4Michael MerschRoman HorakJustin Auger10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Anton CederholmWiley Sherman40122
2Eric KnodelReece Willcox30122
3Tucker PoolmanVille Pokka20122
4Connor MackeyLawrence Pilut10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jordan LaValleeDaniel O'reganIlya Mikheyev60122
2Adam TambelliniHenrik BorgstromAlex Belzile40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Anton CederholmWiley Sherman60122
2Eric KnodelReece Willcox40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jordan LaValleeIlya Mikheyev60122
2Adam TambelliniDaniel O'regan40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Anton CederholmWiley Sherman60122
2Eric KnodelReece Willcox40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jordan LaVallee60122Anton CederholmWiley Sherman60122
2Ilya Mikheyev40122Eric KnodelReece Willcox40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jordan LaValleeIlya Mikheyev60122
2Adam TambelliniDaniel O'regan40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Anton CederholmWiley Sherman60122
2Eric KnodelReece Willcox40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jordan LaValleeDaniel O'reganIlya MikheyevAnton CederholmWiley Sherman
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jordan LaValleeDaniel O'reganIlya MikheyevAnton CederholmWiley Sherman
Extra Forwards
Normal PowerPlayPenalty Kill
Emile Poirier, Shane Gersich, Radel FazleevEmile Poirier, Shane GersichRadel Fazleev
Extra Defensemen
Normal PowerPlayPenalty Kill
Tucker Poolman, Ville Pokka, Connor MackeyTucker PoolmanVille Pokka, Connor Mackey
Penalty Shots
Jordan LaVallee, Ilya Mikheyev, Adam Tambellini, Daniel O'regan, Henrik Borgstrom
Goalie
#1 : Michael Houser, #2 : Danil Tarasov


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals31100001912-31010000017-62100000185330.500915240093100112101168949308845811135265313215.38%13284.62%0934183550.90%889173751.18%651130649.85%174699016687481454723
2Barracuda21100000871110000004131010000046-220.50081422009310011210748949308845856171037500.00%50100.00%0934183550.90%889173751.18%651130649.85%174699016687481454723
3Bears402000021823-5302000011216-41000000167-120.25018325000931001121014489493088458139512412910110.00%12375.00%0934183550.90%889173751.18%651130649.85%174699016687481454723
4Comets6240000024213312000001192312000001312140.33324406400931001121021889493088458172573613234617.65%18572.22%0934183550.90%889173751.18%651130649.85%174699016687481454723
5Condors22000000844110000003121100000053241.000813210093100112106589493088458683110352150.00%50100.00%0934183550.90%889173751.18%651130649.85%174699016687481454723
6Crunch312000001415-120200000912-31100000053220.333142438109310011210848949308845897303453700.00%17382.35%0934183550.90%889173751.18%651130649.85%174699016687481454723
7Devils311000011517-220100001615-91100000092730.50015254000931001121012389493088458972816599111.11%8362.50%0934183550.90%889173751.18%651130649.85%174699016687481454723
8Eagles30101001511-62010000129-71000100032130.50059140093100112109989493088458108431659800.00%9188.89%0934183550.90%889173751.18%651130649.85%174699016687481454723
9Griffins210000016511000000123-11100000042230.75061117009310011210528949308845854161038900.00%5180.00%0934183550.90%889173751.18%651130649.85%174699016687481454723
10Heat21100000101001010000057-21100000053220.5001016260093100112106789493088458592018427571.43%9188.89%1934183550.90%889173751.18%651130649.85%174699016687481454723
11Icehogs20101000660100010004311010000023-120.500610160093100112106689493088458763216381119.09%8362.50%0934183550.90%889173751.18%651130649.85%174699016687481454723
12Marlies5220010025241321000001713420100100811-350.50025386300931001121015989493088458160544211623417.39%21861.90%0934183550.90%889173751.18%651130649.85%174699016687481454723
13Monsters20100100412-81010000018-71000010034-110.25048120093100112106089493088458672326446350.00%13376.92%0934183550.90%889173751.18%651130649.85%174699016687481454723
14Moose421010001513211000000431311010001110160.7501527420093100112101348949308845813336168817211.76%8187.50%0934183550.90%889173751.18%651130649.85%174699016687481454723
15Penguins311000011319-621000001111101010000028-630.500132437009310011210109894930884589539356711327.27%15753.33%0934183550.90%889173751.18%651130649.85%174699016687481454723
16Phantoms311000101183110000008352010001035-240.6671116270093100112101008949308845810044166813215.38%80100.00%1934183550.90%889173751.18%651130649.85%174699016687481454723
17Punishers624000002131-10321000001516-130300000615-940.33321335400931001121020689493088458204556310327518.52%29775.86%0934183550.90%889173751.18%651130649.85%174699016687481454723
18Rampage6410000128181032100000119232000001179890.75028487600931001121020889493088458184654213833824.24%22290.91%0934183550.90%889173751.18%651130649.85%174699016687481454723
19Reign312000001113-22110000078-11010000045-120.33311193000931001121095894930884588931206910330.00%10370.00%0934183550.90%889173751.18%651130649.85%174699016687481454723
20Rocket21100000910-11010000036-31100000064220.500916250093100112106689493088458752018394250.00%9277.78%0934183550.90%889173751.18%651130649.85%174699016687481454723
21Senators20200000711-41010000045-11010000036-300.000710170093100112105589493088458641814504125.00%7185.71%0934183550.90%889173751.18%651130649.85%174699016687481454723
22Sound Tigers311000018801000000134-12110000054130.5008122000931001121010489493088458822518689111.11%9188.89%0934183550.90%889173751.18%651130649.85%174699016687481454723
23Thunderbirds31200000111011010000034-12110000086220.33311203100931001121010289493088458953230558112.50%15286.67%1934183550.90%889173751.18%651130649.85%174699016687481454723
24Wolfpack320000101147110000004132100001073461.0001117280093100112109989493088458934516751317.69%80100.00%0934183550.90%889173751.18%651130649.85%174699016687481454723
25Wolves31100010141041010000034-121000010116540.6671423370093100112101208949308845811339195210220.00%70100.00%0934183550.90%889173751.18%651130649.85%174699016687481454723
Total80293403239311322-1140141901006153178-254015150223315814414810.506311520831109310011210272589493088458259188659117073035518.15%2905979.66%3934183550.90%889173751.18%651130649.85%174699016687481454723
_Since Last GM Reset80293403239311322-1140141901006153178-254015150223315814414810.506311520831109310011210272589493088458259188659117073035518.15%2905979.66%3934183550.90%889173751.18%651130649.85%174699016687481454723
_Vs Conference46162001027182187-5247120000590110-20229801022927715450.48918230748910931001121016168949308845814795093499901792916.20%1693479.88%1934183550.90%889173751.18%651130649.85%174699016687481454723
_Vs Division1889000017370395400000373439350000136360170.4727312119400931001121063289493088458560177141373941920.21%691479.71%0934183550.90%889173751.18%651130649.85%174699016687481454723

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8081L131152083127252591886591170710
All Games
GPWLOTWOTL SOWSOLGFGA
8029343239311322
Home Games
GPWLOTWOTL SOWSOLGFGA
4014191006153178
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4015152233158144
Last 10 Games
WLOTWOTL SOWSOL
360001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3035518.15%2905979.66%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
894930884589310011210
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
934183550.90%889173751.18%651130649.85%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
174699016687481454723


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2022-10-287Rampage2Little Stars1BLR1BoxScore
5 - 2022-10-3126Little Stars5Rampage6ALXXBoxScore
7 - 2022-11-0236Bears5Little Stars4BLBoxScore
9 - 2022-11-0446Little Stars2Moose4ALBoxScore
12 - 2022-11-0762Little Stars2Punishers5ALR1BoxScore
13 - 2022-11-0871Comets4Little Stars3BLBoxScore
16 - 2022-11-1185Little Stars1Sound Tigers3ALBoxScore
18 - 2022-11-1392Punishers2Little Stars4BWR1BoxScore
21 - 2022-11-16111Devils6Little Stars5BLXXBoxScore
23 - 2022-11-18129Little Stars1Phantoms4ALBoxScore
25 - 2022-11-20137Little Stars2Comets4ALR1BoxScore
27 - 2022-11-22145Marlies5Little Stars3BLBoxScore
29 - 2022-11-24152Little Stars3Wolfpack2AWXXBoxScore
31 - 2022-11-26163Little Stars5Thunderbirds1AWBoxScore
33 - 2022-11-28177Eagles2Little Stars1BLXXBoxScore
36 - 2022-12-01192Little Stars6Wolves2AWBoxScore
38 - 2022-12-03200Little Stars4Marlies5ALXBoxScore
39 - 2022-12-04207Punishers7Little Stars3BLR1BoxScore
43 - 2022-12-08222Little Stars5Heat3AWBoxScore
45 - 2022-12-10232Punishers7Little Stars8BWR1BoxScore
47 - 2022-12-12248Little Stars6Rocket4AWBoxScore
49 - 2022-12-14257Little Stars4Griffins2AWBoxScore
50 - 2022-12-15260Comets1Little Stars5BWR1BoxScore
55 - 2022-12-20283Sound Tigers4Little Stars3BLXXBoxScore
57 - 2022-12-22294Little Stars5Moose4AWXBoxScore
59 - 2022-12-24300Little Stars2Icehogs3ALBoxScore
61 - 2022-12-26310Wolves4Little Stars3BLBoxScore
63 - 2022-12-28323Little Stars3Eagles2AWXBoxScore
66 - 2022-12-31337Monsters8Little Stars1BLBoxScore
68 - 2023-01-02352Little Stars4Barracuda6ALBoxScore
70 - 2023-01-04363Penguins8Little Stars7BLXXBoxScore
72 - 2023-01-06373Little Stars4Marlies6ALBoxScore
76 - 2023-01-10389Griffins3Little Stars2BLXXBoxScore
77 - 2023-01-11399Little Stars3Monsters4ALXBoxScore
81 - 2023-01-15416Admirals7Little Stars1BLBoxScore
85 - 2023-01-19435Little Stars5Condors3AWBoxScore
86 - 2023-01-20442Devils9Little Stars1BLBoxScore
89 - 2023-01-23461Icehogs3Little Stars4BWXBoxScore
91 - 2023-01-25470Little Stars4Rampage2AWR1BoxScore
93 - 2023-01-27483Little Stars9Devils2AWBoxScore
95 - 2023-01-29492Penguins3Little Stars4BWBoxScore
97 - 2023-01-31505Little Stars5Wolves4AWXXBoxScore
99 - 2023-02-02517Reign2Little Stars5BWBoxScore
101 - 2023-02-04524Little Stars4Moose2AWBoxScore
104 - 2023-02-07542Reign6Little Stars2BLBoxScore
108 - 2023-02-11560Little Stars2Phantoms1AWXXBoxScore
110 - 2023-02-13572Senators5Little Stars4BLBoxScore
112 - 2023-02-15585Little Stars4Sound Tigers1AWBoxScore
114 - 2023-02-17595Comets4Little Stars3BLR1BoxScore
117 - 2023-02-20608Little Stars3Punishers4ALR1BoxScore
120 - 2023-02-23620Rampage3Little Stars4BWBoxScore
122 - 2023-02-25631Little Stars3Admirals4ALXXBoxScore
125 - 2023-02-28646Condors1Little Stars3BWBoxScore
127 - 2023-03-02656Little Stars8Rampage1AWR1BoxScore
129 - 2023-03-04672Rampage4Little Stars6BWBoxScore
130 - 2023-03-05679Little Stars8Comets4AWR1BoxScore
134 - 2023-03-09696Little Stars5Crunch3AWBoxScore
135 - 2023-03-10703Barracuda1Little Stars4BWBoxScore
139 - 2023-03-14725Little Stars3Senators6ALBoxScore
140 - 2023-03-15730Wolfpack1Little Stars4BWBoxScore
143 - 2023-03-18745Little Stars4Wolfpack1AWBoxScore
145 - 2023-03-20754Eagles7Little Stars1BLBoxScore
149 - 2023-03-24776Moose3Little Stars4BWBoxScore
151 - 2023-03-26788Little Stars1Punishers6ALR1BoxScore
153 - 2023-03-28802Bears5Little Stars3BLBoxScore
155 - 2023-03-30808Little Stars4Reign5ALBoxScore
159 - 2023-04-03829Thunderbirds4Little Stars3BLBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
160 - 2023-04-04832Little Stars6Bears7ALXXBoxScore
166 - 2023-04-10857Phantoms3Little Stars8BWBoxScore
169 - 2023-04-13878Heat7Little Stars5BLBoxScore
171 - 2023-04-15889Little Stars5Admirals1AWBoxScore
175 - 2023-04-19906Crunch6Little Stars4BLBoxScore
177 - 2023-04-21916Little Stars3Comets4ALR1BoxScore
181 - 2023-04-25933Marlies3Little Stars6BWBoxScore
184 - 2023-04-28951Bears6Little Stars5BLXXBoxScore
190 - 2023-05-04976Little Stars2Penguins8ALBoxScore
192 - 2023-05-06984Rocket6Little Stars3BLBoxScore
193 - 2023-05-07991Little Stars3Thunderbirds5ALBoxScore
198 - 2023-05-121009Marlies5Little Stars8BWBoxScore
203 - 2023-05-171031Crunch6Little Stars5BLBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance74,80936,512
Attendance PCT93.51%91.28%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2783 - 92.77% 83,107$3,324,294$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,951,942$ 2,744,500$ 2,604,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
12,862$ 2,185,335$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 16,964$ 0$




Little Stars Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Little Stars Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Little Stars Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Little Stars Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Little Stars Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA