Checkers
GP: 80 | W: 45 | L: 31 | OTL: 4 | P: 94
GF: 336 | GA: 317 | PP%: 22.65% | PK%: 74.32%
GM : Jean-Francois Chouinard | Morale : 50 | Team Overall : 63
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Michael Latta (R)X100.007138687980678075697674676654484170710242900,000$
2Jonathan Huberdeau (R) (A)X100.007325757474757577748873566649455566710224990,000$
3Aleksander Barkov (R) (C)X100.007550767873737475717873607145426452710204850,000$
4Tobias Rieder (R)X100.0073458072717176777573736569524559647002211,000,000$
5Quinton Howden (R)X100.007136757568687175667466646846454770680232500,000$
6Jerry D'Amigo (R)X100.006534787267776867667067656846463860660243700,000$
7Kerby Rychel (R)X100.008149687374607874636567606645445757660213700,000$
8Jake Virtanen (R)X100.007239696679567768636770515141416670640191500,000$
9Mitchell Heard (R)X100.007232646975566559586968655547473727630233500,000$
10Matt Puempel (R)X100.006438766865636566606167476844445660620224500,000$
11Roberts Lipsbergs (R)X100.006930705871676461726163516444455059600212400,000$
12Michael McCarron (R)X100.007444616277537959616460436142425670590202500,000$
13Aaron Ekblad (R)X100.007446847470767176517466735947418067710191500,000$
14Michal Jordan (R)X100.006624827274776970577370706365593661700252600,000$
15William ColbertX100.007237807066667765547165745878641870700301800,000$
16John Draeger (R)X100.006622757070666756397058805447464558670222500,000$
17Markus Nutivaara (R)X100.005735727360526785328756694744436827660212500,000$
18Niklas Hansson (R)X100.006616777261727057407146825148425368660202400,000$
Scratches
1Kyle Platzer (R)X100.004034676541645172566360567742424919590202400,000$
2Juuso Ikonen (R)X100.005028716558535167575860566042425319580202400,000$
3Anton Zlobin (R)X100.005721636356585661526167405545463919570221400,000$
4Connor Honey (R)X100.006457595267597640554247465642425120520202400,000$
5Lukas Vejdemo (R)X100.004229756152605248595254494842425820520192500,000$
6Dmytro Timashov (R)X100.004724654647455559556440425242425820490192500,000$
7Viktor Baldayev (R)X100.006848676273626864395746684643425419630202400,000$
8Keaton Thompson (R)X100.005636666956556860436854685243425720610202400,000$
9Nelson Nogier (R)X100.006337705863645953336154674141416020600191500,000$
10Jake Walman (R)X100.005832786667665852335738703641416618600191500,000$
TEAM AVERAGE100.00653572676664676555676161584745534563
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Garret Sparks100.0072718759647279556380714644487068X0
2Igor Bobkov100.00736366716970756767628048463470680
Scratches
1Marek Langhamer100.00614658626953555856497043435120570
TEAM AVERAGE100.0069607064676570606264744644445364
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Glen Gulutzan54607666334563CAN421350,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Michael LattaCheckers (Flo)C804359102247201721902679817216.10%50160720.09817253323511272877348.66%18334430021.27010001055
2Tobias RiederCheckers (Flo)RW7942529419595121952868515814.69%46179622.7417203755278101112753153.41%1763630021.0515001556
3Aleksander BarkovCheckers (Flo)C55334982163588851995012316.58%21107019.4714223634205000034151.15%16153917011.5326001755
4Jonathan HuberdeauCheckers (Flo)LW482839679280103601795014615.64%23101521.1551217191640113702258.89%903613001.3213000343
5Aaron EkbladCheckers (Flo)D78105363722010016216374746.13%131221728.4331316263020225321300.00%04662000.5701000222
6Jerry D'AmigoCheckers (Flo)RW803025551424010168149408420.13%26108513.5730336521381135057.58%333021101.0111000252
7Quinton HowdenCheckers (Flo)C801635513400126106176751099.09%29113114.1422475912391801145.59%5902513000.9000000242
8Kerby RychelCheckers (Flo)LW78272350249511563163488916.56%20100612.91336111260001401245.71%352714110.9923000512
9Michal JordanCheckers (Flo)D7611374841808610911540569.57%98169622.3345921270011034300.00%03465000.5700000116
10Markus NutivaaraCheckers (Flo)D7743842-238957510814155682.84%94161520.9827916215000139100.00%02643000.5201000000
11Jake VirtanenCheckers (Flo)RW80222042-660010363138388415.94%19112414.0625711172101102250.67%75226000.7502000112
12William ColbertCheckers (Flo)D807182518260941228539378.24%89162920.3734782030220200110.00%02242000.3100000001
13Matt PuempelCheckers (Flo)LW75915240180794173265212.33%788211.76123358000011034.78%2378000.5400000002
14John DraegerCheckers (Flo)D7821719916061814716254.26%61113014.490000340001212000.00%01432000.3400000010
15Mitchell HeardCheckers (Flo)C4651116-332054557220466.94%64219.17000000001111043.75%1601510000.7600000000
16Roberts LipsbergsCheckers (Flo)LW791141512200623259153218.64%106758.55000070000220147.06%1769000.4400000121
17Niklas HanssonCheckers (Flo)D791141516435631055230291.92%91126516.02000080002313000.00%01037000.2400000010
18Stefan RuzickaPanthersRW1278153100162046133215.22%524020.021235371014391157.89%76111011.2500000200
19Michael McCarronCheckers (Flo)RW8068147480852046133013.04%56337.9100004000000245.45%1154000.4400000011
20Kyle PlatzerCheckers (Flo)C22731048051935142520.00%42039.24000110000172040.26%7773000.9800000001
21Keaton ThompsonCheckers (Flo)D21010202422150.00%54221.351011500001000.00%012000.4700000000
22Anton ZlobinCheckers (Flo)RW110110000100100.00%066.480000000000000.00%000003.0800000000
23Viktor BaldayevCheckers (Flo)D1300011151384130.00%615511.930000100004000.00%006000.0000001000
24Juuso IkonenCheckers (Flo)LW6000-200635310.00%0559.270000000006000.00%011000.0000000000
25Jake WalmanCheckers (Flo)D3000-100010000.00%062.310000000001000.00%000000.0000000000
Team Total or Average138732352885111975830173016202503845147612.90%8462271616.3869114183254246071017542201381749.32%4811464469270.75723003413841
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Igor BobkovCheckers (Flo)64371620.8833.7134011002101800905220.714146020210
2Garret SparksCheckers (Flo)3181520.8654.28143120102756385300.75082060111
Team Total or Average95453140.8783.87483312031225561290520.727228080321


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Aaron EkbladCheckers (Flo)D191996-01-01Yes180 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$No
Aleksander BarkovCheckers (Flo)C201995-01-01Yes185 Lbs6 ft4NoNoNo4Pro & Farm850,000$0$0$No1,750,000$3,000,000$4,250,000$
Anton ZlobinCheckers (Flo)RW221993-01-01Yes180 Lbs6 ft0NoNoNo1Pro & Farm400,000$0$0$No
Connor HoneyCheckers (Flo)RW201995-01-01Yes185 Lbs6 ft1NoNoNo2Pro & Farm400,000$0$0$No500,000$
Dmytro TimashovCheckers (Flo)LW191996-01-01Yes192 Lbs5 ft10NoNoNo2Pro & Farm500,000$0$0$No500,000$
Garret SparksCheckers (Flo)G221993-01-01No207 Lbs6 ft2NoYesNo2Pro & Farm999,999$0$0$No999,999$
Igor BobkovCheckers (Flo)G241991-01-01No235 Lbs6 ft5NoNoNo2Pro & Farm600,000$0$0$No600,000$
Jake VirtanenCheckers (Flo)RW191996-01-01Yes226 Lbs6 ft1NoNoNo1Pro & Farm500,000$0$0$No
Jake WalmanCheckers (Flo)D191996-01-01Yes180 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$No
Jerry D'AmigoCheckers (Flo)RW241991-01-01Yes208 Lbs5 ft11NoNoNo3Pro & Farm700,000$0$0$No800,000$850,000$
John DraegerCheckers (Flo)D221993-01-01Yes186 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$
Jonathan HuberdeauCheckers (Flo)LW221993-01-01Yes188 Lbs6 ft1NoNoNo4Pro & Farm990,000$0$0$No3,000,000$3,000,000$3,500,000$
Juuso IkonenCheckers (Flo)LW201995-01-01Yes185 Lbs5 ft9NoNoNo2Pro & Farm400,000$0$0$No500,000$
Keaton ThompsonCheckers (Flo)D201995-01-01Yes185 Lbs6 ft0NoNoNo2Pro & Farm400,000$0$0$No500,000$
Kerby RychelCheckers (Flo)LW211994-01-01Yes185 Lbs6 ft1NoNoNo3Pro & Farm700,000$0$0$No800,000$900,000$
Kyle PlatzerCheckers (Flo)C201995-01-01Yes185 Lbs5 ft11NoNoNo2Pro & Farm400,000$0$0$No500,000$
Lukas VejdemoCheckers (Flo)C191996-01-01Yes194 Lbs6 ft4NoNoNo2Pro & Farm500,000$0$0$No500,000$
Marek LanghamerCheckers (Flo)G211994-01-01No181 Lbs6 ft1NoNoNo1Pro & Farm300,000$0$0$No
Markus NutivaaraCheckers (Flo)D211994-01-01Yes187 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$
Matt PuempelCheckers (Flo)LW221993-01-01Yes190 Lbs6 ft0NoNoNo4Pro & Farm500,000$0$0$No550,000$600,000$600,000$
Michael LattaCheckers (Flo)C241991-01-01Yes209 Lbs6 ft0NoNoNo2Pro & Farm900,000$0$0$No1,000,000$
Michael McCarronCheckers (Flo)RW201995-01-01Yes185 Lbs6 ft5NoNoNo2Pro & Farm500,000$0$0$No500,000$
Michal JordanCheckers (Flo)D251990-01-01Yes195 Lbs6 ft1NoNoNo2Pro & Farm600,000$0$0$No600,000$
Mitchell HeardCheckers (Flo)C231992-01-01Yes188 Lbs6 ft0NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$
Nelson NogierCheckers (Flo)D191996-01-01Yes191 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$No
Niklas HanssonCheckers (Flo)D201995-01-01Yes185 Lbs6 ft1NoNoNo2Pro & Farm400,000$0$0$No500,000$
Quinton HowdenCheckers (Flo)C231992-01-01Yes189 Lbs6 ft2NoNoNo2Pro & Farm500,000$0$0$No600,000$
Roberts LipsbergsCheckers (Flo)LW211994-01-01Yes185 Lbs5 ft11NoNoNo2Pro & Farm400,000$0$0$No500,000$
Tobias RiederCheckers (Flo)RW221993-01-01Yes185 Lbs5 ft11NoNoNo1Pro & Farm1,000,000$0$0$No
Viktor BaldayevCheckers (Flo)D201995-01-01Yes185 Lbs6 ft3NoNoNo2Pro & Farm400,000$0$0$No500,000$
William ColbertCheckers (Flo)D301985-01-01No210 Lbs6 ft2NoNoNo1Pro & Farm800,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3121.39192 Lbs6 ft12.03569,032$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jonathan HuberdeauAleksander BarkovTobias Rieder40023
2Kerby RychelMichael LattaJerry D'Amigo30023
3Matt PuempelQuinton HowdenJake Virtanen20032
4Roberts LipsbergsMitchell HeardMichael McCarron10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Aaron EkbladMarkus Nutivaara40023
2Michal JordanWilliam Colbert30023
3John DraegerNiklas Hansson20122
4Aaron EkbladMarkus Nutivaara10023
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jonathan HuberdeauAleksander BarkovTobias Rieder60014
2Kerby RychelMichael LattaJerry D'Amigo40014
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Aaron EkbladMarkus Nutivaara60023
2Michal JordanWilliam Colbert40023
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Michael LattaJerry D'Amigo60131
2Quinton HowdenTobias Rieder40131
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1John DraegerNiklas Hansson60140
2William ColbertAaron Ekblad40140
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Michael Latta60131John DraegerNiklas Hansson60140
2Mitchell Heard40131William ColbertAaron Ekblad40140
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Aleksander BarkovJonathan Huberdeau60023
2Michael LattaTobias Rieder40023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Aaron EkbladMarkus Nutivaara60023
2William ColbertMichal Jordan40023
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jonathan HuberdeauAleksander BarkovTobias RiederAaron EkbladMarkus Nutivaara
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Kerby RychelMichael LattaTobias RiederJohn DraegerNiklas Hansson
Extra Forwards
Normal PowerPlayPenalty Kill
Jake Virtanen, Jonathan Huberdeau, Aleksander BarkovJake Virtanen, Jonathan HuberdeauMichael Latta
Extra Defensemen
Normal PowerPlayPenalty Kill
Niklas Hansson, Markus Nutivaara, Aaron EkbladWilliam ColbertAaron Ekblad, Niklas Hansson
Penalty Shots
Aleksander Barkov, Tobias Rieder, Quinton Howden, Michael Latta, Jonathan Huberdeau
Goalie
#1 : Igor Bobkov, #2 : Garret Sparks


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals220000001147110000005231100000062441.000112031008611812686885586384736522122437342.86%11372.73%0887179849.33%904182649.51%638133247.90%173695916397551466736
2Barracuda20200000712-51010000025-31010000057-200.000712190086118126875855863847366514183710110.00%9455.56%0887179849.33%904182649.51%638133247.90%173695916397551466736
3Bears3210000014104220000009451010000056-140.667142539008611812689185586384736913024808112.50%12375.00%0887179849.33%904182649.51%638133247.90%173695916397551466736
4Comets3110100012111100010006512110000066040.667122133008611812681028558638473610925166412433.33%8275.00%0887179849.33%904182649.51%638133247.90%173695916397551466736
5Condors220000001055110000003211100000073441.0001018280086118126865855863847365515264111218.18%13284.62%0887179849.33%904182649.51%638133247.90%173695916397551466736
6Crunch310010101293100010003212100001097261.000122032008611812689385586384736924718761317.69%9188.89%1887179849.33%904182649.51%638133247.90%173695916397551466736
7Devils43000010141043200001011831100000032181.000142034008611812681328558638473611647389514321.43%19478.95%0887179849.33%904182649.51%638133247.90%173695916397551466736
8Eagles614000102435-11312000001216-4302000101219-740.3332441651086118126819785586384736192788512134720.59%391366.67%1887179849.33%904182649.51%638133247.90%173695916397551466736
9Griffins20200000913-41010000045-11010000058-300.000915240086118126865855863847366117144911218.18%7271.43%0887179849.33%904182649.51%638133247.90%173695916397551466736
10Heat7430000026242321000001192422000001515080.5712639650086118126820985586384736216655615940717.50%28678.57%2887179849.33%904182649.51%638133247.90%173695916397551466736
11IceHogs21000100660110000004311000010023-130.7506101600861181268798558638473664221642300.00%8450.00%0887179849.33%904182649.51%638133247.90%173695916397551466736
12Influenza20200000510-51010000037-41010000023-100.000581300861181268578558638473665111642500.00%8362.50%0887179849.33%904182649.51%638133247.90%173695916397551466736
13Little Stars4220000016160312000001012-21100000064240.500162642008611812681338558638473612547327718316.67%16381.25%0887179849.33%904182649.51%638133247.90%173695916397551466736
14Monsters32000001981110000004312100000155050.833916250086118126890855863847361033924721417.14%12191.67%0887179849.33%904182649.51%638133247.90%173695916397551466736
15Moose2110000068-21010000026-41100000042220.5006101600861181268558558638473665252452200.00%12375.00%0887179849.33%904182649.51%638133247.90%173695916397551466736
16Penguins63200001332763210000018126311000011515070.58333528500861181268186855863847362105662135231043.48%26773.08%0887179849.33%904182649.51%638133247.90%173695916397551466736
17Phantoms21100000121111010000067-11100000064220.500122032008611812686585586384736651914449444.44%7528.57%0887179849.33%904182649.51%638133247.90%173695916397551466736
18Punishers3110001012102110000005322010001077040.667121830008611812681048558638473610334288411436.36%14378.57%0887179849.33%904182649.51%638133247.90%173695916397551466736
19Rampage413000001825-7211000001212020200000613-720.250182846008611812681388558638473613148429424833.33%221054.55%1887179849.33%904182649.51%638133247.90%173695916397551466736
20Reign220000001046110000005321100000051441.000101929008611812686985586384736571917407114.29%70100.00%0887179849.33%904182649.51%638133247.90%173695916397551466736
21Rocket2020000038-51010000023-11010000015-400.00034700861181268598558638473660191847800.00%9188.89%1887179849.33%904182649.51%638133247.90%173695916397551466736
22Senators33000000191091100000053222000000147761.00019325100861181268103855863847361103935548337.50%17664.71%0887179849.33%904182649.51%638133247.90%173695916397551466736
23Sound Tigers211000008711010000035-21100000052320.50081523108611812686085586384736572820407114.29%10280.00%0887179849.33%904182649.51%638133247.90%173695916397551466736
24Thunderbirds311000011091210000016331010000046-230.50010182800861181268978558638473698461664500.00%80100.00%0887179849.33%904182649.51%638133247.90%173695916397551466736
25Wolfpack64200000302553300000020911312000001016-680.66730558500861181268188855863847361966078125361130.56%39782.05%0887179849.33%904182649.51%638133247.90%173695916397551466736
Total8039310214333631719402214020111711492240171700132165168-3940.58833656289820861181268258085586384736255887175917773407722.65%3709574.32%6887179849.33%904182649.51%638133247.90%173695916397551466736
_Since Last GM Reset8039310214333631719402214020111711492240171700132165168-3940.58833656289820861181268258085586384736255887175917773407722.65%3709574.32%6887179849.33%904182649.51%638133247.90%173695916397551466736
_Vs Conference52251902042226211152615702011119942526101200031107117-10640.61522637059610861181268168285586384736169859250611482386125.63%2456274.69%5887179849.33%904182649.51%638133247.90%173695916397551466736
_Vs Division2512110001111311121284000006146151347000115265-13270.54011318730010861181268780855863847368142592815401333526.32%1323375.00%3887179849.33%904182649.51%638133247.90%173695916397551466736

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8094W233656289825802558871759177720
All Games
GPWLOTWOTL SOWSOLGFGA
8039312143336317
Home Games
GPWLOTWOTL SOWSOLGFGA
4022142011171149
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4017170132165168
Last 10 Games
WLOTWOTL SOWSOL
250021
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3407722.65%3709574.32%6
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
85586384736861181268
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
887179849.33%904182649.51%638133247.90%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
173695916397551466736


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-10-091Checkers1Heat5LR1BoxScore
3 - 2020-10-1114Checkers4Penguins5LBoxScore
4 - 2020-10-1224Penguins3Checkers8WBoxScore
9 - 2020-10-1746Devils3Checkers4WBoxScore
11 - 2020-10-1958Wolfpack4Checkers7WR1BoxScore
12 - 2020-10-2065Checkers6Eagles7LBoxScore
16 - 2020-10-2486Heat2Checkers5WR1BoxScore
18 - 2020-10-2698Checkers3Heat5LBoxScore
20 - 2020-10-28112Heat3Checkers4WR1BoxScore
23 - 2020-10-31129Eagles5Checkers3LBoxScore
24 - 2020-11-01130Checkers1Wolfpack6LR1BoxScore
30 - 2020-11-07162Little Stars3Checkers6WBoxScore
32 - 2020-11-09176Checkers5Heat3WR1BoxScore
34 - 2020-11-11182Checkers3Wolfpack7LBoxScore
35 - 2020-11-12193Eagles8Checkers4LR2BoxScore
39 - 2020-11-16211IceHogs3Checkers4WBoxScore
42 - 2020-11-19228Checkers5Senators3WBoxScore
44 - 2020-11-21237Devils2Checkers3WBoxScore
46 - 2020-11-23252Checkers9Senators4WBoxScore
49 - 2020-11-26265Phantoms7Checkers6LBoxScore
52 - 2020-11-29280Checkers6Phantoms4WBoxScore
54 - 2020-12-01290Punishers3Checkers5WBoxScore
57 - 2020-12-04305Checkers7Condors3WBoxScore
59 - 2020-12-06317Checkers4Moose2WBoxScore
61 - 2020-12-08325Condors2Checkers3WBoxScore
64 - 2020-12-11345Reign3Checkers5WBoxScore
66 - 2020-12-13354Checkers3Devils2WBoxScore
68 - 2020-12-15365Checkers2IceHogs3LXBoxScore
70 - 2020-12-17375Bears3Checkers6WBoxScore
72 - 2020-12-19382Checkers2Monsters3LXXBoxScore
75 - 2020-12-22398Heat4Checkers2LR1BoxScore
78 - 2020-12-25412Checkers5Punishers4WXXBoxScore
80 - 2020-12-27425Senators3Checkers5WBoxScore
82 - 2020-12-29435Checkers3Rampage6LR1BoxScore
84 - 2020-12-31448Checkers6Little Stars4WBoxScore
86 - 2021-01-02457Checkers5Reign1WBoxScore
88 - 2021-01-04463Admirals2Checkers5WBoxScore
92 - 2021-01-08484Influenza7Checkers3LBoxScore
94 - 2021-01-10502Checkers5Griffins8LBoxScore
96 - 2021-01-12509Comets5Checkers6WXBoxScore
98 - 2021-01-14516Checkers5Bears6LBoxScore
102 - 2021-01-18535Moose6Checkers2LBoxScore
106 - 2021-01-22551Checkers6Heat2WR1BoxScore
108 - 2021-01-24558Checkers8Penguins6WBoxScore
109 - 2021-01-25565Barracuda5Checkers2LBoxScore
112 - 2021-01-28586Sound Tigers5Checkers3LBoxScore
115 - 2021-01-31603Checkers2Influenza3LBoxScore
117 - 2021-02-02614Wolfpack1Checkers5WR1BoxScore
119 - 2021-02-04621Checkers5Barracuda7LBoxScore
122 - 2021-02-07638Crunch2Checkers3WXBoxScore
125 - 2021-02-10657Checkers1Rocket5LBoxScore
127 - 2021-02-12664Eagles3Checkers5WR2BoxScore
130 - 2021-02-15679Checkers4Thunderbirds6LBoxScore
132 - 2021-02-17691Rampage6Checkers7WR1BoxScore
135 - 2021-02-20708Checkers2Punishers3LBoxScore
137 - 2021-02-22716Bears1Checkers3WBoxScore
139 - 2021-02-24725Checkers3Rampage7LR1BoxScore
142 - 2021-02-27743Rocket3Checkers2LBoxScore
144 - 2021-03-01753Checkers5Sound Tigers2WBoxScore
148 - 2021-03-05769Rampage6Checkers5LR1BoxScore
151 - 2021-03-08788Checkers6Wolfpack3WR1BoxScore
153 - 2021-03-10796Little Stars4Checkers3LBoxScore
158 - 2021-03-15817Wolfpack4Checkers8WR1BoxScore
160 - 2021-03-17829Checkers6Admirals2WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
162 - 2021-03-19841Monsters3Checkers4WBoxScore
164 - 2021-03-21848Checkers5Comets2WBoxScore
167 - 2021-03-24861Checkers5Crunch4WXXBoxScore
169 - 2021-03-26872Thunderbirds1Checkers5WBoxScore
171 - 2021-03-28886Checkers4Crunch3WBoxScore
173 - 2021-03-30891Checkers3Penguins4LXXBoxScore
174 - 2021-03-31897Checkers2Eagles9LR2BoxScore
176 - 2021-04-02909Griffins5Checkers4LBoxScore
178 - 2021-04-04922Checkers4Eagles3WXXR2BoxScore
181 - 2021-04-07933Little Stars5Checkers1LBoxScore
186 - 2021-04-12953Devils3Checkers4WXXBoxScore
190 - 2021-04-16973Penguins8Checkers6LBoxScore
191 - 2021-04-17980Checkers1Comets4LBoxScore
196 - 2021-04-221007Thunderbirds2Checkers1LXXBoxScore
199 - 2021-04-251021Penguins1Checkers4WBoxScore
201 - 2021-04-271030Checkers3Monsters2WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3020
Attendance76,35127,247
Attendance PCT95.44%68.12%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2590 - 86.33% 74,431$2,977,242$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,736,503$ 2,655,000$ 2,580,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
12,951$ 2,370,345$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 14,659$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT