Bears
GP: 80 | W: 32 | L: 41 | OTL: 7 | P: 71
GF: 310 | GA: 354 | PP%: 26.37% | PK%: 76.63%
DG: Jean-Manuel Estrela | Morale : 20 | Moyenne d'Équipe : 59
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1William Karlsson (R) (A)X100.006733807475717574757571657147445328700221800,000$
2Dany RoussinX100.007237747074716371737370597173661826690301450,000$
3Brayden Point (R) (C)X100.007337775783667567676787546842417952670191500,000$
4Mike Hoffman (A)X100.007026707271676669716770607058573014660261950,000$
5Trevor LewisX100.006631727266716067706970607159571922660281850,000$
6Jamie McGinnX100.007932656272637164666466647049492631640272425,000$
7Angelo EspositoX100.006239696364636868766967516848482429630263550,000$
8Zach Stepan (R)X100.006017796763756962616357636643434240620211475,000$
9Artturi Lehkonen (R)X100.005333707761605869655761516742425837600204500,000$
10Colton SceviourX100.006236685964605763605366486448482726580262500,000$
11Vincent Dunn (R)X100.006135705565506960626150545142425640560202360,000$
12Austin Poganski (R)X100.005940666562496855515361525241415540560191500,000$
13Mikko Vainonen (R)X100.005729766463596164496055685044433922610212280,000$
14Gianluca Curcuruto (R)X100.006534686455616057475848614943434432590211300,000$
15Emil Johansson (R)X100.005143675757625856435955564341415630560191500,000$
16Jesper Pettersson (R)X100.005340645759605854596161425245434425550201500,000$
17Ryan Graves (R)X100.005029685757576156315837573842424819540202450,000$
18Mackenze Stewart (R)X100.004638635454605552565661384841415440520191500,000$
Rayé
1Brock McGinn (R)X77.367646737679687874677472686846445629700213950,000$
2Jakob Lilja (R)X100.005835696367605368625752546150493122580222500,000$
3Nikolay Prokhorkin (R)X100.005034755750585958737560475545443925580221375,000$
4Colby Cave (R)X100.004624685664505555475470415643433925540212360,000$
5Artur Gavrus (R)X100.005621554353524345545763445143433625510211300,000$
6Jarrod Maidens (R)X100.005627674956575554515249305943433825500211300,000$
MOYENNE D'ÉQUIPE99.06603370626461626260626254594746422960
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Niklas Treutle100.00616270686866656469676557543335660
2Sergei Kostenko100.00745857597057605556607247463234600
Rayé
1Hugo Fagerblom100.00514738474641395038484141415719430
MOYENNE D'ÉQUIPE100.0062565558615555565458594847412956
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Lanne MacDonald75586370346237USA693325,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1William KarlssonBears (Was)C745578133-142601532002827716719.50%73176723.881127383921941582123352.35%20235649031.51040001155
2Dany RoussinBears (Was)LW694672118-632101391343039918115.18%54163123.641919385221404491837254.22%1666927101.4546011959
3Brayden PointBears (Was)C79294675-73751361442005713014.50%41150919.1181927342190226931046.74%12433332000.9928001434
4Trevor LewisBears (Was)C76303767-222001131222057011214.63%31117515.46481215993148781150.40%7564221001.1426000433
5Jamie McGinnBears (Was)LW80322658-314751411351844311317.39%40121315.17761322971012663259.09%663131000.9616001253
6Mike HoffmanBears (Was)LW47193049-524081861545911912.34%2689419.045712161121015651258.97%394717001.1001000221
7Brock McGinnBears (Was)LW39272249-93756462170538515.88%1785621.9789172011620251121048.96%964112101.1413100241
8Mikko VainonenBears (Was)D76103545-264757814510258509.80%123195125.677916222510005222110.00%01979000.4600010131
9Colton SceviourBears (Was)RW722022421455986481255124.69%29122016.96961522218000002038.82%85822010.6900010102
10Gianluca CurcurutoBears (Was)D7473441-217801211547934358.86%103183224.772911122020114208200.00%11665000.4500000010
11Angelo EspositoBears (Was)C72162339-1929592101125488412.80%38101714.133251158000003059.81%3212217000.7733001020
12Austin PoganskiBears (Was)RW80141428-1842011711878255017.95%39139017.382688186000004139.39%661326000.4000000121
13Artturi LehkonenBears (Was)LW80121527-243005358113427410.62%2682310.29134324000001056.00%252416000.6600000002
14Zach StepanBears (Was)C8081220-14100578761203313.11%327609.510000130002410041.71%211915000.5302000001
15Jesper PetterssonBears (Was)D7611213-2249549623113153.23%53138018.1613441240221122000.00%0932000.1900001000
16Ryan GravesBears (Was)D6711011-1226036712819103.57%6697014.48134130000055000.00%0637000.2300000001
17Emil JohanssonBears (Was)D68099-11541053964616150.00%79140420.6500051410001154000.00%01135000.1300100000
18Jakob LiljaBears (Was)LW70358-6603836317169.68%64836.911012140005730048.48%33810000.3300000010
19Nikolay ProkhorkinBears (Was)LW70178-3401425228194.55%53324.7501118000070053.85%2631000.4800000000
20Vincent DunnBears (Was)C80123-60051070314.29%31792.24000050001370028.57%2102000.3300000010
21Mackenze StewartBears (Was)D80011-3380222915850.00%2594411.8100009000055000.00%0313000.0200000000
22Colby CaveBears (Was)C70000-100001140.00%0460.66000000000190028.57%1400000.0000000000
23Jarrod MaidensBears (Was)C70000000000000.00%020.030000000000000.00%000000.0000000000
24Artur GavrusBears (Was)C70000000200000.00%1150.220000000007000.00%100000.0000000000
Stats d'équipe Total ou en Moyenne1719332512844-27968155166219392318782137114.32%9102380313.85891372262892370111122621819301250.32%5193470559240.711339235373734
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Niklas TreutleBears (Was)67232870.8774.0634762023519151014520.517295921412
2Sergei KostenkoBears (Was)3291300.8584.96135620112791450410.80052156000
Stats d'équipe Total ou en Moyenne99324170.8724.3148334034727061464930.559348077412


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Angelo EspositoBears (Was)C261989-01-01No190 Lbs6 ft0NoNoNo3Pro & Farm550,000$0$0$No550,000$550,000$
Artturi LehkonenBears (Was)LW201995-01-01Yes185 Lbs5 ft11NoNoNo4Pro & Farm500,000$0$0$No500,000$500,000$500,000$
Artur GavrusBears (Was)C211994-01-01Yes175 Lbs5 ft9NoNoNo1Pro & Farm300,000$0$0$No
Austin PoganskiBears (Was)RW191996-01-01Yes198 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Brayden PointBears (Was)C191996-01-01Yes166 Lbs5 ft10NoNoNo1Pro & Farm500,000$0$0$No
Brock McGinn (Sur la Masse Salariale)Bears (Was)LW211994-01-01Yes174 Lbs5 ft11NoNoNo3Pro & Farm950,000$0$0$Yes1,100,000$1,500,000$
Colby CaveBears (Was)C211994-01-01Yes185 Lbs6 ft1NoNoNo2Pro & Farm360,000$0$0$No360,000$
Colton SceviourBears (Was)RW261989-01-01No201 Lbs5 ft11NoNoNo2Pro & Farm500,000$0$0$No500,000$
Dany RoussinBears (Was)LW301985-01-01No190 Lbs6 ft2NoNoNo1Farm Only450,000$0$0$No
Emil JohanssonBears (Was)D191996-01-01Yes189 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Gianluca CurcurutoBears (Was)D211994-01-01Yes195 Lbs6 ft0NoNoNo1Farm Only300,000$0$0$No
Hugo FagerblomBears (Was)G191996-01-01No202 Lbs6 ft6NoNoNo1Pro & Farm500,000$0$0$No
Jakob LiljaBears (Was)LW221993-01-01Yes196 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$
Jamie McGinnBears (Was)LW271988-01-01No205 Lbs6 ft1NoNoNo2Pro & Farm425,000$0$0$No425,000$
Jarrod MaidensBears (Was)C211994-01-01Yes178 Lbs6 ft0NoNoNo1Pro & Farm300,000$0$0$No
Jesper PetterssonBears (Was)D201995-01-01Yes189 Lbs5 ft9NoNoNo1Pro & Farm500,000$0$0$No
Mackenze StewartBears (Was)D191996-01-01Yes230 Lbs6 ft4NoNoNo1Pro & Farm500,000$0$0$No
Mike HoffmanBears (Was)LW261989-01-01No185 Lbs6 ft0NoNoNo1Pro & Farm950,000$0$0$No
Mikko VainonenBears (Was)D211994-01-01Yes222 Lbs6 ft2NoNoNo2Pro & Farm280,000$0$0$No300,000$
Niklas TreutleBears (Was)G251990-01-01No185 Lbs6 ft2NoNoNo3Pro & Farm750,000$0$0$No750,000$750,000$
Nikolay ProkhorkinBears (Was)LW221993-01-01Yes190 Lbs6 ft2NoNoNo1Pro & Farm375,000$0$0$No
Ryan GravesBears (Was)D201995-01-01Yes225 Lbs6 ft4NoNoNo2Pro & Farm450,000$0$0$No450,000$
Sergei KostenkoBears (Was)G231992-01-01No187 Lbs5 ft11NoNoNo1Pro & Farm300,000$0$0$No
Trevor LewisBears (Was)C281987-01-01No195 Lbs6 ft1NoNoNo1Pro & Farm850,000$0$0$No
Vincent DunnBears (Was)C201995-01-01Yes185 Lbs5 ft11NoNoNo2Pro & Farm360,000$0$0$No360,000$
William KarlssonBears (Was)C221993-01-01Yes188 Lbs6 ft1NoNoNo1Pro & Farm800,000$0$0$No
Zach StepanBears (Was)C211994-01-01Yes165 Lbs5 ft11NoNoNo1Pro & Farm475,000$0$0$No
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2722.19192 Lbs6 ft01.59508,333$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Dany RoussinWilliam KarlssonColton Sceviour40122
2Mike HoffmanBrayden PointAustin Poganski30122
3Jamie McGinnTrevor LewisAngelo Esposito20122
4Artturi LehkonenAngelo EspositoWilliam Karlsson10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mikko VainonenGianluca Curcuruto40122
2Emil JohanssonJesper Pettersson30122
3Ryan GravesMackenze Stewart20122
4Mikko VainonenGianluca Curcuruto10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Dany RoussinWilliam KarlssonColton Sceviour60122
2Mike HoffmanBrayden PointAustin Poganski40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mikko VainonenGianluca Curcuruto60122
2Emil JohanssonJesper Pettersson40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1William KarlssonDany Roussin60122
2Brayden PointTrevor Lewis40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mikko VainonenGianluca Curcuruto60122
2Emil JohanssonJesper Pettersson40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1William Karlsson60122Mikko VainonenGianluca Curcuruto60122
2Dany Roussin40122Emil JohanssonJesper Pettersson40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1William KarlssonDany Roussin60122
2Brayden PointTrevor Lewis40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Mikko VainonenGianluca Curcuruto60122
2Emil JohanssonJesper Pettersson40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Dany RoussinWilliam KarlssonColton SceviourMikko VainonenGianluca Curcuruto
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Dany RoussinWilliam KarlssonColton SceviourMikko VainonenGianluca Curcuruto
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Zach Stepan, Vincent Dunn, Jamie McGinnZach Stepan, Vincent DunnJamie McGinn
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Ryan Graves, Mackenze Stewart, Emil JohanssonRyan GravesMackenze Stewart, Emil Johansson
Tirs de Pénalité
William Karlsson, Dany Roussin, Brayden Point, Trevor Lewis, Mike Hoffman
Gardien
#1 : Sergei Kostenko, #2 : Niklas Treutle


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals32100000913-41010000007-72200000096340.66791423008010212511886867447874410233185217529.41%9277.78%0814157351.75%851173349.11%665130550.96%151674717897891531770
2Barracuda3120000089-1211000006601010000023-120.333811190080102125111046867447874411436165913323.08%7357.14%0814157351.75%851173349.11%665130550.96%151674717897891531770
3Checkers312000001014-4110000006512020000049-520.33310152510801021251191686744787449154166012325.00%8187.50%0814157351.75%851173349.11%665130550.96%151674717897891531770
4Comets522000011921-2320000011511420200000410-650.50019304900801021251114168674478744161564210018633.33%21480.95%0814157351.75%851173349.11%665130550.96%151674717897891531770
5Condors302001001115-420200000912-31000010023-110.16711182910801021251182686744787448353305718422.22%15380.00%0814157351.75%851173349.11%665130550.96%151674717897891531770
6Crunch200000119901000000134-11000001065130.750913220080102125116168674478744722318447114.29%9188.89%1814157351.75%851173349.11%665130550.96%151674717897891531770
7Devils211000001394110000008171010000058-320.5001324370080102125115968674478744733064712541.67%30100.00%0814157351.75%851173349.11%665130550.96%151674717897891531770
8Eagles302001001018-81010000045-120100100613-710.167101929008010212511736867447874411040466511218.18%13376.92%0814157351.75%851173349.11%665130550.96%151674717897891531770
9Griffins312000001014-41010000025-32110000089-120.3331018280080102125118368674478744983026556350.00%13192.31%0814157351.75%851173349.11%665130550.96%151674717897891531770
10Heat302000101316-31010000045-120100010911-220.333132336008010212511746867447874410542166213430.77%80100.00%0814157351.75%851173349.11%665130550.96%151674717897891531770
11IceHogs330000002111102200000015691100000065161.000213253008010212511926867447874410536456815533.33%20480.00%1814157351.75%851173349.11%665130550.96%151674717897891531770
12Influenza6420000024186330000001358312000001113-280.66724396300801021251116568674478744189634512423417.39%20385.00%1814157351.75%851173349.11%665130550.96%151674717897891531770
13Little Stars211000001113-21010000038-51100000085320.5001115260080102125116268674478744732726316233.33%13653.85%1814157351.75%851173349.11%665130550.96%151674717897891531770
14Monsters312000001719-211000000642202000001115-420.333172643008010212511846867447874411338225510220.00%11463.64%1814157351.75%851173349.11%665130550.96%151674717897891531770
15Moose31200000713-62110000068-21010000015-420.3337121900801021251161686744787441133122718450.00%11372.73%0814157351.75%851173349.11%665130550.96%151674717897891531770
16Penguins422000001918121100000981211000001010040.5001932510080102125111236867447874413433358213323.08%15286.67%0814157351.75%851173349.11%665130550.96%151674717897891531770
17Phantoms31100010981110000003122010001067-140.66791221008010212511102686744787449931205817211.76%9366.67%0814157351.75%851173349.11%665130550.96%151674717897891531770
18Punishers32100000161242110000011921100000053240.66716233900801021251175686744787449735186210330.00%9366.67%2814157351.75%851173349.11%665130550.96%151674717897891531770
19Rampage2020000019-81010000014-31010000005-500.0001120080102125114868674478744631831425120.00%9544.44%0814157351.75%851173349.11%665130550.96%151674717897891531770
20Reign623001002128-731100100812-4312000001316-350.41721325300801021251116168674478744185793912520525.00%16475.00%1814157351.75%851173349.11%665130550.96%151674717897891531770
21Rocket311000011516-120100001911-21100000065130.500152338008010212511786867447874411542206612541.67%9455.56%0814157351.75%851173349.11%665130550.96%151674717897891531770
22Senators21100000810-2110000007341010000017-620.500814220080102125116168674478744752414437114.29%7271.43%0814157351.75%851173349.11%665130550.96%151674717897891531770
23Sound Tigers615000001725-830300000613-7312000001112-120.16717264310801021251114468674478744202705210528621.43%21480.95%1814157351.75%851173349.11%665130550.96%151674717897891531770
24Thunderbirds21100000910-11010000035-21100000065120.500915240080102125116168674478744651616406350.00%9366.67%0814157351.75%851173349.11%665130550.96%151674717897891531770
25Wolfpack2010000136-31010000024-21000000112-110.250358008010212511556867447874472261245400.00%60100.00%0814157351.75%851173349.11%665130550.96%151674717897891531770
Total80294100334310354-4440171900103159162-340122200231151192-41710.444310492802308010212511222868674478744270996665116183118226.37%2916876.63%9814157351.75%851173349.11%665130550.96%151674717897891531770
_Since Last GM Reset11000000523110000005230000000000021.000510150080102125113268674478744261616255120.00%8187.50%0814157351.75%851173349.11%665130550.96%151674717897891531770
_Vs Conference45182300211169189-20231011001018390-722812001108699-13410.45616926343220801021251112446867447874415185423558951874825.67%1613876.40%5814157351.75%851173349.11%665130550.96%151674717897891531770
_Vs Division18710001006271-9944001002730-3936000003541-6150.417629715910801021251147068674478744576212136354711521.13%571180.70%3814157351.75%851173349.11%665130550.96%151674717897891531770

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8071W131049280222282709966651161830
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8029410334310354
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4017190103159162
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4012220231151192
Derniers 10 Matchs
WLOTWOTL SOWSOL
730000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
3118226.37%2916876.63%9
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
686744787448010212511
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
814157351.75%851173349.11%665130550.96%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
151674717897891531770


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-10-108Comets3Bears5WSommaire du Match
5 - 2020-10-1328Reign7Bears3LSommaire du Match
9 - 2020-10-1745Bears0Sound Tigers4LSommaire du Match
11 - 2020-10-1957Sound Tigers5Bears2LSommaire du Match
12 - 2020-10-2061Bears1Reign5LSommaire du Match
15 - 2020-10-2380Influenza1Bears3WSommaire du Match
17 - 2020-10-2594Bears3Influenza5LSommaire du Match
19 - 2020-10-27105Bears7Penguins3WSommaire du Match
21 - 2020-10-29116Penguins1Bears5WSommaire du Match
23 - 2020-10-31125Bears7Sound Tigers2WSommaire du Match
26 - 2020-11-03138Bears8Reign6WSommaire du Match
27 - 2020-11-04146Bears3Griffins7LSommaire du Match
28 - 2020-11-05154Moose6Bears2LSommaire du Match
32 - 2020-11-09174Bears6Influenza5WSommaire du Match
33 - 2020-11-10181Sound Tigers4Bears2LSommaire du Match
36 - 2020-11-13195Influenza2Bears6WSommaire du Match
38 - 2020-11-15203Bears2Comets5LSommaire du Match
40 - 2020-11-17217Bears6Rocket5WSommaire du Match
43 - 2020-11-20229Reign3Bears2LXSommaire du Match
45 - 2020-11-22246Bears1Moose5LSommaire du Match
47 - 2020-11-24253Bears4Phantoms3WXXSommaire du Match
48 - 2020-11-25259Penguins7Bears4LSommaire du Match
51 - 2020-11-28275Bears1Senators7LSommaire du Match
53 - 2020-11-30284Bears2Eagles3LXSommaire du Match
54 - 2020-12-01288Moose2Bears4WSommaire du Match
58 - 2020-12-05310Bears4Eagles10LSommaire du Match
59 - 2020-12-06315Rocket5Bears4LSommaire du Match
63 - 2020-12-10337Crunch4Bears3LXXSommaire du Match
65 - 2020-12-12353Bears2Barracuda3LSommaire du Match
68 - 2020-12-15363Sound Tigers4Bears2LSommaire du Match
70 - 2020-12-17375Bears3Checkers6LSommaire du Match
73 - 2020-12-20387Devils1Bears8WSommaire du Match
77 - 2020-12-24406Bears1Wolfpack2LXXSommaire du Match
78 - 2020-12-25415Admirals7Bears0LSommaire du Match
81 - 2020-12-28429Bears2Comets5LSommaire du Match
83 - 2020-12-30439Thunderbirds5Bears3LSommaire du Match
85 - 2021-01-01454Bears0Rampage5LSommaire du Match
88 - 2021-01-04465Influenza2Bears4WSommaire du Match
90 - 2021-01-06478Bears3Penguins7LSommaire du Match
92 - 2021-01-08489Bears2Condors3LXSommaire du Match
93 - 2021-01-09494Rocket6Bears5LXXSommaire du Match
98 - 2021-01-14516Checkers5Bears6WSommaire du Match
100 - 2021-01-16525Bears6Crunch5WXXSommaire du Match
104 - 2021-01-20539Bears2Phantoms4LSommaire du Match
105 - 2021-01-21544Barracuda2Bears4WSommaire du Match
109 - 2021-01-25566Wolfpack4Bears2LSommaire du Match
111 - 2021-01-27577Bears6Heat5WXXSommaire du Match
113 - 2021-01-29593Little Stars8Bears3LSommaire du Match
115 - 2021-01-31600Bears4Sound Tigers6LSommaire du Match
117 - 2021-02-02613Bears4Reign5LSommaire du Match
119 - 2021-02-04622Heat5Bears4LSommaire du Match
121 - 2021-02-06632Bears5Punishers3WSommaire du Match
124 - 2021-02-09647Griffins5Bears2LSommaire du Match
127 - 2021-02-12665Bears4Admirals3WSommaire du Match
128 - 2021-02-13673IceHogs4Bears10WSommaire du Match
131 - 2021-02-16682Bears6IceHogs5WSommaire du Match
133 - 2021-02-18696Bears6Monsters8LSommaire du Match
134 - 2021-02-19701Phantoms1Bears3WSommaire du Match
137 - 2021-02-22716Bears1Checkers3LSommaire du Match
139 - 2021-02-24727Punishers1Bears6WSommaire du Match
144 - 2021-03-01751Rampage4Bears1LSommaire du Match
146 - 2021-03-03757Bears5Devils8LSommaire du Match
148 - 2021-03-05770Bears3Heat6LSommaire du Match
150 - 2021-03-07780Comets5Bears4LXXSommaire du Match
152 - 2021-03-09792Bears5Griffins2WSommaire du Match
156 - 2021-03-13804Condors5Bears4LSommaire du Match
158 - 2021-03-15813Bears8Little Stars5WSommaire du Match
159 - 2021-03-16824Bears5Monsters7LSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
161 - 2021-03-18832Eagles5Bears4LSommaire du Match
165 - 2021-03-22851Bears2Influenza3LSommaire du Match
166 - 2021-03-23858Monsters4Bears6WSommaire du Match
171 - 2021-03-28884Punishers8Bears5LSommaire du Match
172 - 2021-03-29888Bears6Thunderbirds5WSommaire du Match
175 - 2021-04-01905Bears5Admirals3WSommaire du Match
176 - 2021-04-02910Comets3Bears6WSommaire du Match
182 - 2021-04-08936Barracuda4Bears2LSommaire du Match
188 - 2021-04-14962Reign2Bears3WSommaire du Match
193 - 2021-04-19988Senators3Bears7WSommaire du Match
198 - 2021-04-241013Condors7Bears5LSommaire du Match
203 - 2021-04-291036IceHogs2Bears5WSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des Billets4020
Assistance52,97026,945
Assistance PCT66.21%67.36%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacitéPopularité de l'Équipe
0 1998 - 66.60% 69,765$2,790,585$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,634,694$ 1,277,500$ 1,254,500$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
6,232$ 1,306,380$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 7,817$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT