Monsters
GP: 80 | W: 39 | L: 33 | OTL: 8 | P: 86
GF: 331 | GA: 330 | PP%: 18.73% | PK%: 81.02%
DG: Yann Laforest | Morale : 42 | Moyenne d'Équipe : 64
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Emerson Etem (R)X100.007229807372737571677085646750464562700231800,000$
2Andrew GordonX100.006241776478636668667771626975701831680301850,000$
3Matt CalvertX100.006625747274807173636378607462563324680261900,000$
4Justin Florek (R)X100.007431766474736968716873606860593362670251600,000$
5Dominik Simon (R)X100.005740836459755978747071575148486746660212500,000$
6Ondrej Kase (R)X100.007148816966657164667367637141416640660191500,000$
7Mitch Marner (R)X100.006036806353747068878467446040409460650182500,000$
8Bobby FarnhamX100.007669646280628063626563607068663353650261500,000$
9Jared Knight (R)X100.006221726268697165687069616446454148640231600,000$
10Austin Watson (R)X100.006928766266666865666269606246454057630232600,000$
11Maxim Mamin (R)X100.005634726853646661635860535842425932590202500,000$
12Beau Starrett (R)X100.004441594853595451545359364541415249500191500,000$
13Cameron Hughes (R)X100.005026634761565453544847414642426621490192500,000$
14Roman JosiX100.007130857374747774556872726254484031710253900,000$
15Timothy KunesX100.007231677774747274386665755564512420700281900,000$
16Shea Theodore (R)X100.005937857855667675418469764646426359690202950,000$
17Aaron Ness (R)X100.006838747570747270477269685953483552680251500,000$
18David KolomatisX100.006129856971726766536960696363573062670261500,000$
19Dillon Heatherington (R)X100.006624826061677155416047784943425549630202500,000$
Rayé
1Ryan Fitzgerald (R)X70.156243746066666470695766566244455448620212550,000$
2Joakim Nordstrom (R)X100.008145596269637566556564545345454435620231350,000$
3Richard Nejezchleb (R)X100.005245695864646058636269525545444530600211350,000$
4Francis Perron (R)X100.005433655541526564667163345541416430560191500,000$
5Morgan Rielly (R)X100.007032886566787569507771656349436224690211925,000$
6Matt Grzelcyk (R)X100.006126677655606570397047645343435227620213600,000$
MOYENNE D'ÉQUIPE98.81643574656568696659676659595048494264
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Thomas Greiss100.00716770687171637368697470652361690
2Eric Comrie100.00677966687070667174705344426155680
Rayé
1Phoenix Copley100.00675863707061506570586653523719630
MOYENNE D'ÉQUIPE100.0068686669706760707166645653404567
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Brent Sutter90646987405956CAN491500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Emerson EtemMonsters (Clb)LW806850118-1254014914538312120917.75%44185623.211420345829611272427252.47%5668928151.272130001452
2Andrew GordonMonsters (Clb)RW67345387345586852275813514.98%38133219.891113244124200031322047.01%1174037011.3129010233
3Shea TheodoreMonsters (Clb)D80116778-1624054155227891014.85%111186323.2941418322731016216000.00%05564000.8400000132
4Dominik SimonMonsters (Clb)C70234164-7300881182076811411.11%25129418.4991019432211123561051.10%15463017010.9904000243
5Matt CalvertMonsters (Clb)LW623527621240108792007011817.50%23108917.577512201821125815244.74%764116011.1459000451
6Christian HansonBlue JacketsC42153752-73956268114386813.16%2886720.6649132113600041211252.80%11061214001.2015000015
7Justin FlorekMonsters (Clb)LW80242852-7280120751955710312.31%25110313.794711101291019604043.94%1323422000.9435000213
8Mitch MarnerMonsters (Clb)RW80153247-52557658162451019.26%17101512.69000149000042368.97%582712010.9300001116
9Roman JosiMonsters (Clb)D70132740-3016010214215561688.39%140184126.316612252430225204300.00%04967000.4300000041
10Jared KnightMonsters (Clb)C71132336-552096102103275412.62%20100414.1514571050001161247.60%626818000.7200000142
11Ondrej KaseMonsters (Clb)RW69161733-17209470138448111.59%27102514.87369181991012492247.92%481815000.6411000025
12Aaron NessMonsters (Clb)D7762632-442075928840406.82%72124816.220224133022199010.00%02822000.5101000211
13Timothy KunesMonsters (Clb)D3752328356084717934406.33%5689724.2626816143022296000.00%02823000.6200000121
14Bobby FarnhamMonsters (Clb)RW77101727-63209549100326010.00%1684410.96112448000091222.22%361515000.6400000000
15Austin WatsonMonsters (Clb)LW7613112461808453103256412.62%137169.43000070000390138.10%21812000.6700000010
16Ryan FitzgeraldMonsters (Clb)C80812200260505672275111.11%217829.7900001000040046.55%391812000.5100000000
17Morgan RiellyMonsters (Clb)D644121634076957826365.13%60131320.53101111720114158100.00%02334000.2401000001
18David KolomatisMonsters (Clb)D8021416-24026794820344.17%58108513.57000153011066000.00%01437000.2900000000
19Joakim NordstromMonsters (Clb)LW54459322039172492416.67%33306.120000220001501147.06%5123000.5400000011
20Dillon HeatheringtonMonsters (Clb)D7109928034692912100.00%5579311.18011012000032000.00%0130000.2300000000
21Richard NejezchlebMonsters (Clb)RW51437912011121231333.33%41913.75000011000001033.33%950000.7300000020
22Maxim MaminMonsters (Clb)C64415612010162272018.18%33395.31000020000200042.64%12926000.2900000000
23Matt GrzelcykMonsters (Clb)D51022514017137380.00%143296.450000200005000.00%019000.1200000000
24Beau StarrettMonsters (Clb)C70011-1100791110.00%21712.45000030000210038.10%6300000.1200000000
25Cameron HughesMonsters (Clb)C31000-100000000.00%130.130000200000000.00%000000.0000000000
26Francis PerronMonsters (Clb)LW51000220102010.00%0541.06000040000240037.50%1600000.0000000000
Stats d'équipe Total ou en Moyenne1705327538865-7760115164417282776917155411.78%8762339713.7267104171312270061117531815321849.87%4991538513190.741448011304037
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Thomas GreissMonsters (Clb)54242110.8734.192838201981553793320.800155121100
2Eric ComrieMonsters (Clb)39131380.8733.941996401311029530510.724293049210
3Phoenix CopleyMonsters (Clb)20100.8644.19430032210100.000008000
Stats d'équipe Total ou en Moyenne95373590.8734.0848776033226041333930.750448178310


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Aaron NessMonsters (Clb)D251990-01-01Yes182 Lbs5 ft10NoNoNo1Pro & Farm500,000$0$0$No
Andrew GordonMonsters (Clb)RW301985-01-01No194 Lbs6 ft0NoNoNo1Pro & Farm850,000$0$0$No
Austin WatsonMonsters (Clb)LW231992-01-01Yes193 Lbs6 ft4NoNoNo2Pro & Farm600,000$0$0$No600,000$
Beau StarrettMonsters (Clb)C191996-01-01Yes215 Lbs6 ft5NoNoNo1Pro & Farm500,000$0$0$No
Bobby FarnhamMonsters (Clb)RW261989-01-01No188 Lbs5 ft10NoNoNo1Pro & Farm500,000$0$0$No
Cameron HughesMonsters (Clb)C191996-01-01Yes195 Lbs5 ft11NoNoNo2Pro & Farm500,000$0$0$No500,000$
David KolomatisMonsters (Clb)D261989-01-01No196 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Dillon HeatheringtonMonsters (Clb)D201995-01-01Yes185 Lbs6 ft4NoNoNo2Pro & Farm500,000$0$0$No500,000$
Dominik SimonMonsters (Clb)C211994-01-01Yes190 Lbs5 ft11NoNoNo2Pro & Farm500,000$0$0$No500,000$
Emerson EtemMonsters (Clb)LW231992-01-01Yes212 Lbs6 ft1NoNoNo1Pro & Farm800,000$0$0$No
Eric ComrieMonsters (Clb)G201995-01-01No185 Lbs6 ft1NoNoNo3Pro & Farm600,000$0$0$No700,000$800,000$
Francis PerronMonsters (Clb)LW191996-01-01Yes178 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$No
Jared KnightMonsters (Clb)C231992-01-01Yes203 Lbs5 ft11NoNoNo1Pro & Farm600,000$0$0$No
Joakim NordstromMonsters (Clb)LW231992-01-01Yes189 Lbs6 ft1NoNoNo1Pro & Farm350,000$0$0$No
Justin FlorekMonsters (Clb)LW251990-01-01Yes199 Lbs6 ft4NoNoNo1Pro & Farm600,000$0$0$No
Matt CalvertMonsters (Clb)LW261989-01-01No187 Lbs5 ft10NoNoNo1Pro & Farm900,000$0$0$No
Matt GrzelcykMonsters (Clb)D211994-01-01Yes171 Lbs5 ft9NoNoNo3Pro & Farm600,000$0$0$No700,000$800,000$
Maxim MaminMonsters (Clb)C201995-01-01Yes185 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$
Mitch MarnerMonsters (Clb)RW181997-01-01Yes175 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$
Morgan RiellyMonsters (Clb)D211994-01-01Yes200 Lbs6 ft0NoNoNo1Pro & Farm925,000$0$0$No
Ondrej KaseMonsters (Clb)RW191996-01-01Yes186 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Phoenix CopleyMonsters (Clb)G231992-01-01No196 Lbs6 ft4NoNoNo1Pro & Farm500,000$0$0$No
Richard NejezchlebMonsters (Clb)RW211994-01-01Yes187 Lbs5 ft11NoNoNo1Pro & Farm350,000$0$0$No
Roman JosiMonsters (Clb)D251990-01-01No198 Lbs6 ft2NoNoNo3Pro & Farm900,000$0$0$No1,000,000$1,000,000$
Ryan Fitzgerald (Sur la Masse Salariale)Monsters (Clb)C211994-01-01Yes185 Lbs5 ft10NoNoNo2Pro & Farm550,000$0$0$Yes550,000$
Shea TheodoreMonsters (Clb)D201995-01-01Yes185 Lbs6 ft2NoNoNo2Pro & Farm950,000$0$0$No950,000$
Thomas GreissMonsters (Clb)G291986-01-01No210 Lbs6 ft1NoNoNo2Pro & Farm650,000$0$0$No650,000$
Timothy KunesMonsters (Clb)D281987-01-01No170 Lbs6 ft1NoNoNo1Pro & Farm900,000$0$0$No
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2822.64191 Lbs6 ft11.54611,607$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Emerson EtemDominik SimonMitch Marner40122
2Matt CalvertJared KnightAndrew Gordon30122
3Justin FlorekOndrej Kase20122
4Austin WatsonMaxim MaminBobby Farnham10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Roman JosiTimothy Kunes40122
2Dillon HeatheringtonShea Theodore30122
3Aaron NessDavid Kolomatis20122
4Roman JosiTimothy Kunes10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Emerson EtemDominik SimonAndrew Gordon60122
2Matt CalvertJared KnightOndrej Kase40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Roman JosiTimothy Kunes60122
2Aaron NessShea Theodore40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Emerson EtemAndrew Gordon60122
2Matt CalvertJustin Florek40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Roman JosiTimothy Kunes60122
2David KolomatisShea Theodore40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Emerson Etem60122Roman JosiTimothy Kunes60122
2Andrew Gordon40122David KolomatisShea Theodore40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Emerson EtemAndrew Gordon60122
2Matt CalvertJustin Florek40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Roman JosiTimothy Kunes60122
2Aaron NessShea Theodore40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Emerson EtemDominik SimonAndrew GordonRoman JosiTimothy Kunes
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Emerson EtemDominik SimonAndrew GordonRoman JosiTimothy Kunes
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Beau Starrett, Cameron Hughes, Bobby FarnhamBeau Starrett, Cameron HughesBobby Farnham
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Aaron Ness, David Kolomatis, Timothy KunesAaron NessDavid Kolomatis, Roman Josi
Tirs de Pénalité
Emerson Etem, Andrew Gordon, Matt Calvert, Justin Florek, Dominik Simon
Gardien
#1 : Thomas Greiss, #2 : Eric Comrie


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals62201010302913110100014140311000101615180.66730457500991151061721293694785369204595512734720.59%25772.00%1943186050.70%868178048.76%678135150.19%171394316897631469739
2Barracuda705000112233-1130300000815-7402000111418-430.21422365800991151061724293694785369220754615129620.69%23482.61%0943186050.70%868178048.76%678135150.19%171394316897631469739
3Bears321000001917222000000151141010000046-240.667193251009911510617113936947853698426205311436.36%10280.00%1943186050.70%868178048.76%678135150.19%171394316897631469739
4Checkers3020001089-1201000105501010000034-120.3338122000991151061710393694785369903328671218.33%14192.86%1943186050.70%868178048.76%678135150.19%171394316897631469739
5Comets2010100089-11010000035-21000100054120.5008111910991151061769936947853697220647600.00%30100.00%0943186050.70%868178048.76%678135150.19%171394316897631469739
6Condors42200000191542110000089-121100000116540.5001932510099115106171369369478536912445208819315.79%9188.89%0943186050.70%868178048.76%678135150.19%171394316897631469739
7Crunch201000101112-11010000046-21000001076120.5001118291099115106178193694785369721918349222.22%9188.89%0943186050.70%868178048.76%678135150.19%171394316897631469739
8Devils220000001064110000006331100000043141.0001017270099115106177193694785369651910436116.67%5340.00%1943186050.70%868178048.76%678135150.19%171394316897631469739
9Eagles21000001761110000003121000000145-130.7507111800991151061761936947853696991850800.00%9277.78%0943186050.70%868178048.76%678135150.19%171394316897631469739
10Griffins31001001141132100100010641000000145-150.8331425390099115106178993694785369843216611616.25%8450.00%0943186050.70%868178048.76%678135150.19%171394316897631469739
11Heat20200000610-41010000014-31010000056-100.00069150099115106176293694785369782914333133.33%7185.71%0943186050.70%868178048.76%678135150.19%171394316897631469739
12IceHogs7320011027234320000101798412001001014-490.64327437000991151061723693694785369204724616232825.00%23291.30%1943186050.70%868178048.76%678135150.19%171394316897631469739
13Influenza3110001011110210000108531010000036-340.6671117280099115106171109369478536910735225810220.00%11372.73%0943186050.70%868178048.76%678135150.19%171394316897631469739
14Little Stars210000016511000000123-11100000042230.75061117009911510617689369478536968161848300.00%90100.00%0943186050.70%868178048.76%678135150.19%171394316897631469739
15Moose312000001112-1211000008801010000034-120.33311182900991151061783936947853691053746679111.11%23386.96%0943186050.70%868178048.76%678135150.19%171394316897631469739
16Penguins22000000862110000002111100000065141.0008152300991151061754936947853695616124613323.08%60100.00%0943186050.70%868178048.76%678135150.19%171394316897631469739
17Phantoms32100000171161100000062421100000119240.6671724410099115106171149369478536910539215818527.78%8275.00%0943186050.70%868178048.76%678135150.19%171394316897631469739
18Punishers210000101477100000106511100000082641.000142135009911510617809369478536967206328337.50%30100.00%0943186050.70%868178048.76%678135150.19%171394316897631469739
19Rampage613001012130-9312000001217-530100101913-440.33321365700991151061721493694785369197814612720630.00%23673.91%0943186050.70%868178048.76%678135150.19%171394316897631469739
20Reign31200000710-3110000003212020000048-420.3337121900991151061784936947853691002520511200.00%10280.00%0943186050.70%868178048.76%678135150.19%171394316897631469739
21Rocket312000001415-11010000056-12110000099020.333142539109911510617120936947853698530266321628.57%14471.43%0943186050.70%868178048.76%678135150.19%171394316897631469739
22Senators210000101183110000008621000001032141.0001118290099115106176693694785369783620417228.57%11281.82%0943186050.70%868178048.76%678135150.19%171394316897631469739
23Sound Tigers321000001091110000005232110000057-240.66710182800991151061710793694785369922949442827.14%18477.78%0943186050.70%868178048.76%678135150.19%171394316897631469739
24Thunderbirds302001001117-620100100611-51010000056-110.167112132009911510617112936947853691074614648112.50%7185.71%0943186050.70%868178048.76%678135150.19%171394316897631469739
25Wolfpack211000009901010000046-21100000053220.50091423009911510617729369478536964151438500.00%7185.71%1943186050.70%868178048.76%678135150.19%171394316897631469739
Total80283303385331330140171502141169162740111801244162168-6860.538331541872309911510617275993694785369259786361116533476518.73%2955681.02%6943186050.70%868178048.76%678135150.19%171394316897631469739
_Since Last GM Reset80283303385331330140171502141169162740111801244162168-6860.538331541872309911510617275993694785369259786361116533476518.73%2955681.02%6943186050.70%868178048.76%678135150.19%171394316897631469739
_Vs Conference48182102142201196523127020201078918256140012294107-13510.53120132752810991151061716469369478536915145043879832394518.83%1823879.12%3943186050.70%868178048.76%678135150.19%171394316897631469739
_Vs Division2059011317985-693401010393811125001214047-7200.5007912420300991151061769093694785369628206147440952122.11%711381.69%2943186050.70%868178048.76%678135150.19%171394316897631469739

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
8086L133154187227592597863611165330
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
8028333385331330
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4017152141169162
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
4011181244162168
Derniers 10 Matchs
WLOTWOTL SOWSOL
330121
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
3476518.73%2955681.02%6
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
936947853699911510617
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
943186050.70%868178048.76%678135150.19%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
171394316897631469739


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
2 - 2020-10-107IceHogs5Monsters8WSommaire du Match
4 - 2020-10-1219Monsters3IceHogs2WSommaire du Match
7 - 2020-10-1535Barracuda6Monsters3LSommaire du Match
9 - 2020-10-1747Monsters3Barracuda4LSommaire du Match
10 - 2020-10-1853Monsters3Rampage5LSommaire du Match
13 - 2020-10-2170Monsters2Barracuda5LSommaire du Match
14 - 2020-10-2276Rampage3Monsters8WSommaire du Match
17 - 2020-10-2591Admirals4Monsters5WXSommaire du Match
19 - 2020-10-27103Monsters7Admirals6WXXSommaire du Match
23 - 2020-10-31124Influenza3Monsters5WSommaire du Match
24 - 2020-11-01133Monsters3IceHogs6LSommaire du Match
27 - 2020-11-04147Monsters4Sound Tigers3WSommaire du Match
28 - 2020-11-05153Barracuda6Monsters3LSommaire du Match
31 - 2020-11-08171IceHogs2Monsters3WXXSommaire du Match
35 - 2020-11-12192Monsters2IceHogs3LSommaire du Match
37 - 2020-11-14202Condors4Monsters7WSommaire du Match
40 - 2020-11-17215Devils3Monsters6WSommaire du Match
44 - 2020-11-21236Comets5Monsters3LSommaire du Match
47 - 2020-11-24257Monsters5Wolfpack3WSommaire du Match
49 - 2020-11-26264Monsters1Reign3LSommaire du Match
51 - 2020-11-28274Reign2Monsters3WSommaire du Match
54 - 2020-12-01292Phantoms2Monsters6WSommaire du Match
56 - 2020-12-03303Monsters4Devils3WSommaire du Match
58 - 2020-12-05311Monsters3Rampage4LXXSommaire du Match
60 - 2020-12-07324Eagles1Monsters3WSommaire du Match
64 - 2020-12-11343Monsters8Punishers2WSommaire du Match
65 - 2020-12-12352Condors5Monsters1LSommaire du Match
68 - 2020-12-15361Monsters4Phantoms6LSommaire du Match
70 - 2020-12-17372Monsters4Griffins5LXXSommaire du Match
72 - 2020-12-19382Checkers2Monsters3WXXSommaire du Match
75 - 2020-12-22399Barracuda3Monsters2LSommaire du Match
77 - 2020-12-24409Monsters4Condors5LSommaire du Match
79 - 2020-12-26420Monsters3Moose4LSommaire du Match
81 - 2020-12-28428Monsters5Heat6LSommaire du Match
83 - 2020-12-30437Moose5Monsters4LSommaire du Match
85 - 2021-01-01453Monsters5Comets4WXSommaire du Match
87 - 2021-01-03461Little Stars3Monsters2LXXSommaire du Match
89 - 2021-01-05470Monsters2IceHogs3LXSommaire du Match
91 - 2021-01-07481Monsters3Reign5LSommaire du Match
93 - 2021-01-09493Griffins4Monsters7WSommaire du Match
95 - 2021-01-11504Monsters5Rocket3WSommaire du Match
97 - 2021-01-13513Monsters7Phantoms3WSommaire du Match
99 - 2021-01-15520Griffins2Monsters3WXSommaire du Match
104 - 2021-01-20541Sound Tigers2Monsters5WSommaire du Match
106 - 2021-01-22548Monsters7Crunch6WXXSommaire du Match
109 - 2021-01-25564Monsters4Eagles5LXXSommaire du Match
110 - 2021-01-26571Moose3Monsters4WSommaire du Match
113 - 2021-01-29592Heat4Monsters1LSommaire du Match
115 - 2021-01-31605Monsters4Little Stars2WSommaire du Match
118 - 2021-02-03618Senators6Monsters8WSommaire du Match
122 - 2021-02-07640Monsters3Rampage4LXSommaire du Match
124 - 2021-02-09646Rampage8Monsters3LSommaire du Match
127 - 2021-02-12668Penguins1Monsters2WSommaire du Match
129 - 2021-02-14674Monsters1Sound Tigers4LSommaire du Match
131 - 2021-02-16683Monsters4Rocket6LSommaire du Match
133 - 2021-02-18696Bears6Monsters8WSommaire du Match
137 - 2021-02-22720Rampage6Monsters1LSommaire du Match
139 - 2021-02-24728Monsters3Senators2WXXSommaire du Match
143 - 2021-02-28745IceHogs2Monsters6WSommaire du Match
147 - 2021-03-04765Monsters6Penguins5WSommaire du Match
149 - 2021-03-06771Punishers5Monsters6WXXSommaire du Match
152 - 2021-03-09793Admirals7Monsters3LSommaire du Match
154 - 2021-03-11797Monsters3Influenza6LSommaire du Match
157 - 2021-03-14808Monsters5Thunderbirds6LSommaire du Match
159 - 2021-03-16824Bears5Monsters7WSommaire du Match
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
162 - 2021-03-19841Monsters3Checkers4LSommaire du Match
164 - 2021-03-21849Rocket6Monsters5LSommaire du Match
166 - 2021-03-23858Monsters4Bears6LSommaire du Match
169 - 2021-03-26877Crunch6Monsters4LSommaire du Match
174 - 2021-03-31898Wolfpack6Monsters4LSommaire du Match
175 - 2021-04-01904Monsters3Barracuda2WXXSommaire du Match
178 - 2021-04-04921Monsters6Barracuda7LXXSommaire du Match
180 - 2021-04-06927Influenza2Monsters3WXXSommaire du Match
186 - 2021-04-12952Monsters5Admirals3WSommaire du Match
187 - 2021-04-13958Thunderbirds5Monsters1LSommaire du Match
190 - 2021-04-16975Monsters4Admirals6LSommaire du Match
192 - 2021-04-18985Thunderbirds6Monsters5LXSommaire du Match
194 - 2021-04-20996Monsters7Condors1WSommaire du Match
197 - 2021-04-231012Admirals3Monsters6WSommaire du Match
201 - 2021-04-271030Checkers3Monsters2LSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des Billets4020
Assistance54,14427,389
Assistance PCT67.68%68.47%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacitéPopularité de l'Équipe
0 2038 - 67.94% 71,230$2,849,217$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
2,227,748$ 1,657,500$ 1,637,500$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
8,085$ 1,718,112$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 10,524$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT