Your STHS is out of Date! Please update your STHS version!
Login

Moose
GP: 80 | W: 41 | L: 34 | OTL: 5 | P: 87
GF: 360 | GA: 337 | PP%: 24.84% | PK%: 79.08%
GM : Pascal Verret | Morale : 45 | Team Overall : 64
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Reign
42-28-10, 94pts
4
FINAL
2 Moose
41-34-5, 87pts
Team Stats
W4StreakW1
22-15-3Home Record20-16-4
20-13-7Home Record21-18-1
9-1-0Last 10 Games3-6-1
4.16Goals Per Game4.50
3.78Goals Against Per Game4.21
22.79%Power Play Percentage24.84%
79.02%Penalty Kill Percentage79.08%
Moose
41-34-5, 87pts
6
FINAL
4 Rocket
38-30-12, 88pts
Team Stats
W1StreakL1
20-16-4Home Record24-12-4
21-18-1Home Record14-18-8
3-6-1Last 10 Games5-3-2
4.50Goals Per Game4.38
4.21Goals Against Per Game4.55
24.84%Power Play Percentage19.63%
79.08%Penalty Kill Percentage79.14%
Team Leaders
Goals
Dylan Strome
56
Assists
Dylan Strome
78
Points
Dylan Strome
134
Plus/Minus
Dylan Strome
28
Wins
Filip Gustavsson
37
Save Percentage
Karel Vejmelka
0.876

Team Stats
Goals For
360
4.50 GFG
Shots For
2608
32.60 Avg
Power Play Percentage
24.8%
80 GF
Offensive Zone Start
36.1%
Goals Against
337
4.21 GAA
Shots Against
2622
32.78 Avg
Penalty Kill Percentage
79.1%%
64 GA
Defensive Zone Start
36.5%
Team Info

General ManagerPascal Verret
CoachJared Bednar
DivisionThayer-Tutt
ConferenceRobert-Lebel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,786
Season Tickets300


Roster Info

Pro Team34
Farm Team18
Contract Limit52 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Dylan Strome (R)X100.006628817171837878878373575856476071710213975,000$
2Mathieu Joseph (R)X100.007638747676687776627177736852465366710212975,000$
3Nikolay Goldobin (R)X100.006937827774726182677472717951475165710223975,000$
4Michael McLeod (R)X100.005837768567716284676773677647445865700203975,000$
5Chase De Leo (R)X100.006930837272727370727875556449465256690222900,000$
6Nick Paul (R)X100.006649847173707068677374596945454064680232800,000$
7Vinni Lettieri (R)X100.006539867379787457687860656050504516670231500,000$
8Anders Bjork (R)X100.006429758262686582617061597144454460660221650,000$
9Julien Gauthier (R)X100.006429816175686070647175546446435155650212650,000$
10Boris Katchouk (R)X100.007042766863687272676366536743456565640201500,000$
11Kieffer Bellows (R)X100.006324815676696965666473457043445943630203550,000$
12Jake Leschyshyn (R)X100.007636656677618071636560525442427065620191500,000$
13Ludwig Bystrom (R)X100.007423777978767979507361786169503857730241975,000$
14Juuso Valimaki (R)X100.005630708062696479368151715043436525660201500,000$
15Nelson Nogier (R)X100.006641766668696463426860724845454327660221650,000$
16Caleb Jones (R)X100.007344596075704459345752703943435522630211550,000$
17Josh Mahura (R)X100.005537757458636277326956664343435468630203650,000$
18Joey Keane (R)X100.006342806063645966486546595642415822610192500,000$
Scratches
1Tomas JurcoX100.007633757183747073737772657267623341710261775,000$
2Mitchell Stephens (R)X100.004929937167826651736859634843435220620211500,000$
3Nathan Bastian (R)X100.005142746061736369816762526143454620620211500,000$
4Max Jones (R)X100.006844676671567563486962564642425419610202500,000$
5William Bitten (R)X100.007242636669557166515966516042435220600202500,000$
6Riley Damiani (R)X100.005521725547586162686757425040407420560182500,000$
7Jonatan Berggren (R)X100.005528766153566364677055364440406819560182500,000$
8Alexander Khovanov (R)X100.004121696041606052646151394640406320520182500,000$
9Matthew Benning (R)X63.917022817171746568497161755752514142690241850,000$
10Adam Ginning (R)X100.006241626475694848316345564540406620590182500,000$
11Jonathan Kovacevic (R)X100.006234645758655647366240623643454420570211400,000$
12Jonny Tychonick (R)X100.005332695949395972265541604140407520550182500,000$
TEAM AVERAGE98.80643475686767666857696159574645544064
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Filip Gustavsson98.00697278686182836155826949446564680203950,000$
2Daniel Vladar100.00546848695968597266575843446132610212700,000$
Scratches
1Karel Vejmelka100.00756071817661576573497346484920660221500,000$
2Joey Daccord100.00696767505474755754705545444920620222500,000$
TEAM AVERAGE99.5067676667637169646265644645563464
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jared Bednar53568572375954CAN543950,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dylan StromeMoose (Win)C685678134282151121742769216020.29%37151022.2215284338228224121795255.24%23483828131.77011001077
2Mathieu JosephMoose (Win)RW804364107207751331032568617416.80%38162620.34111829372560004791042.03%1385628021.3214001336
3Michael McLeodMoose (Win)C80425395-44001071182807817215.00%26141317.67716232421701171074544.97%12035925011.3411000465
4Nikolay GoldobinMoose (Win)LW80335184-10100128952428615713.64%28150518.8279162622211291735251.77%1415124021.1234000652
5Ludwig BystromMoose (Win)D80145165042015016416356728.59%161223027.8891221292770113266100%04372000.5800000303
6Nick PaulMoose (Win)LW82233457-9140107901875812612.30%25123315.04459121360114871258.33%484423000.9200000154
7Kyle ConnorJetsLW3627255226005135136438319.85%1579021.9510919251112025904143.68%87359031.3211000624
8Chase De LeoMoose (Win)C78242549-111008274143538016.78%2897412.494375340000344351.42%494389001.0100000133
9Anders BjorkMoose (Win)LW77262147-1330087631655611315.76%1895412.400112250003851255.56%364817000.9800000231
10Tomas JurcoMoose (Win)RW59123042-73601065812954729.30%1798716.73371091450002263148.65%372126000.8511000001
11Juuso ValimakiMoose (Win)D6852631-238410811096730397.46%86138620.391894177000211501100.00%12147000.4501010120
12Julien GauthierMoose (Win)RW8091827-780624774233512.16%1686810.861011100110211141.18%341712000.6200000010
13Boris KatchoukMoose (Win)LW80141125-81606937106337013.21%186738.4200002000062060.00%20212000.7400000000
14Matthew BenningMoose (Win)D6631922-3200891157631353.95%63151923.0224681840221187000%01647000.2900000100
15Erik CernakJetsD4041721638081786626286.06%95107826.9734791330113121010%01332000.3900000021
16Jake LeschyshynMoose (Win)C8013720-11420944277235216.88%127209.00000080001701046.45%2821213000.5600000001
17Josh MahuraMoose (Win)D8021517633529735126183.92%53104413.06101438000051000%0628000.3300100000
18Nelson NogierMoose (Win)D5601616128045684517240%52102218.260111970113135000%0645000.3100000000
19Caleb JonesMoose (Win)D62310139460715428111610.71%5891514.77101350000173000%0232000.2800000100
20Vinni LettieriMoose (Win)RW30471124045282051220.00%841613.87123166000001047.37%1947000.5300000000
21Kieffer BellowsMoose (Win)RW583811-76016133711308.11%34097.0700000000000047.06%1788000.5400000010
22Mirco MuellerJetsD506644014810440%813226.41000010000014000%013000.9100000010
23Joey KeaneMoose (Win)D2514574091632333.33%2127310.940000200001000%027000.3700000000
24Riley DamianiMoose (Win)C101233006433633.33%3727.2800000000000051.72%2900000.8200000010
25Max JonesMoose (Win)LW12022-340856530%2655.450000000000000%020000.6100000000
26Mitchell StephensMoose (Win)C5011000112100%0316.3900000000000025.00%800000.6300000000
27Adam GinningMoose (Win)D3000040042000%33411.620000000001000%00100000000000
28Nathan BastianMoose (Win)RW5000000000000%020.540000000002000%00000000000000
29Jonatan BerggrenMoose (Win)LW9000000000000%0111.310000000000000%10000000000000
Team Total or Average1494362601963-462125178316762650913158413.66%8942390816.0080127207238244151116601937342150.96%49435645451110.81713211394238
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Filip GustavssonMoose (Win)74372740.8754.0741286028022411064500.63611719101
2Karel VejmelkaMoose (Win)102500.8763.7436900231851061000428000
3Daniel VladarMoose (Win)82210.8276.163310034196110001.0002543000
Team Total or Average92413450.8714.194829603372622128060138080101


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Adam GinningMoose (Win)D182000-01-01Yes196 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
Alexander KhovanovMoose (Win)C182000-01-01Yes192 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
Anders BjorkMoose (Win)LW221996-01-01Yes190 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm650,000$3,234$0$0$No------------------
Boris KatchoukMoose (Win)LW201998-01-01Yes206 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Caleb JonesMoose (Win)D211997-01-01Yes194 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm550,000$2,736$0$0$No------------------
Chase De LeoMoose (Win)C221996-01-01Yes179 Lbs5 ft9NoNoN/ANoNo2FalseFalsePro & Farm900,000$4,478$0$0$No900,000$--------No--------
Daniel VladarMoose (Win)G211997-01-01No185 Lbs6 ft5NoNoN/ANoNo2FalseFalsePro & Farm700,000$3,483$0$0$No750,000$--------No--------
Dylan StromeMoose (Win)C211997-01-01Yes200 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm975,000$4,851$0$0$No1,500,000$2,250,000$-------NoNo-------
Filip GustavssonMoose (Win)G201998-01-01No183 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm950,000$4,726$0$0$No950,000$950,000$-------NoNo-------
Jake LeschyshynMoose (Win)C191999-01-01Yes192 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Joey DaccordMoose (Win)G221996-01-01No197 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------
Joey KeaneMoose (Win)D191999-01-01Yes187 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
Jonatan BerggrenMoose (Win)LW182000-01-01Yes195 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
Jonathan KovacevicMoose (Win)D211997-01-01Yes208 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm400,000$1,990$0$0$No------------------
Jonny TychonickMoose (Win)D182000-01-01Yes187 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
Josh MahuraMoose (Win)D201998-01-01Yes185 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm650,000$3,234$0$0$No650,000$650,000$-------NoNo-------
Julien GauthierMoose (Win)RW211997-01-01Yes227 Lbs6 ft4NoNoN/ANoNo2FalseFalsePro & Farm650,000$3,234$0$0$No650,000$--------No--------
Juuso ValimakiMoose (Win)D201998-01-01Yes212 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Karel VejmelkaMoose (Win)G221996-01-01No224 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Kieffer BellowsMoose (Win)RW201998-01-01Yes194 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm550,000$2,736$0$0$No550,000$550,000$-------NoNo-------
Ludwig BystromMoose (Win)D241994-01-01Yes169 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm975,000$4,851$0$0$No------------------
Mathieu JosephMoose (Win)RW211997-01-01Yes190 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm975,000$4,851$0$0$No1,000,000$--------No--------
Matthew Benning (Out of Payroll)Moose (Win)D241994-01-01Yes180 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm850,000$4,229$0$0$Yes------------------
Max JonesMoose (Win)LW201998-01-01Yes220 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------
Michael McLeodMoose (Win)C201998-01-01Yes187 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm975,000$4,851$0$0$No975,000$975,000$-------NoNo-------
Mitchell StephensMoose (Win)C211997-01-01Yes193 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Nathan BastianMoose (Win)RW211997-01-01Yes205 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Nelson NogierMoose (Win)D221996-01-01Yes191 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm650,000$3,234$0$0$No------------------
Nick PaulMoose (Win)LW231995-01-01Yes185 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm800,000$3,980$0$0$No900,000$--------No--------
Nikolay GoldobinMoose (Win)LW221996-01-01Yes196 Lbs5 ft11NoNoN/ANoNo3FalseFalsePro & Farm975,000$4,851$0$0$No975,000$975,000$-------NoNo-------
Riley DamianiMoose (Win)C182000-01-01Yes170 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
Tomas JurcoMoose (Win)RW261992-01-01No203 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm775,000$3,856$0$0$No------------------
Vinni LettieriMoose (Win)RW231995-01-01Yes185 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
William BittenMoose (Win)RW201998-01-01Yes179 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3420.82194 Lbs6 ft11.76645,588$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nikolay GoldobinDylan StromeMathieu Joseph40122
2Nick PaulMichael McLeodVinni Lettieri30122
3Anders BjorkChase De LeoJulien Gauthier20122
4Boris KatchoukJake LeschyshynKieffer Bellows10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ludwig BystromJuuso Valimaki40122
2Nelson NogierCaleb Jones30122
3Josh MahuraJoey Keane20122
4Ludwig BystromJuuso Valimaki10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nikolay GoldobinDylan StromeMathieu Joseph60122
2Nick PaulMichael McLeodVinni Lettieri40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ludwig BystromJuuso Valimaki60122
2Nelson NogierCaleb Jones40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Dylan StromeNikolay Goldobin60122
2Michael McLeodNick Paul40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ludwig BystromJuuso Valimaki60122
2Nelson NogierCaleb Jones40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Dylan Strome60122Ludwig BystromJuuso Valimaki60122
2Michael McLeod40122Nelson NogierCaleb Jones40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Dylan StromeNikolay Goldobin60122
2Michael McLeodNick Paul40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ludwig BystromJuuso Valimaki60122
2Nelson NogierCaleb Jones40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nikolay GoldobinDylan StromeMathieu JosephLudwig BystromJuuso Valimaki
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nikolay GoldobinDylan StromeMathieu JosephLudwig BystromJuuso Valimaki
Extra Forwards
Normal PowerPlayPenalty Kill
Chase De Leo, Nick Paul, Vinni LettieriChase De Leo, Nick PaulChase De Leo
Extra Defensemen
Normal PowerPlayPenalty Kill
Caleb Jones, Josh Mahura, Joey KeaneCaleb JonesCaleb Jones, Josh Mahura
Penalty Shots
Mathieu Joseph, Nikolay Goldobin, Dylan Strome, Michael McLeod, Chase De Leo
Goalie
#1 : Filip Gustavsson, #2 : Daniel Vladar
Custom OT Lines Forwards
Mathieu Joseph, Nikolay Goldobin, Dylan Strome, Michael McLeod, Chase De Leo, Nick Paul, Nick Paul, Vinni Lettieri, Anders Bjork, Julien Gauthier, Boris Katchouk
Custom OT Lines Defensemen
Ludwig Bystrom, Juuso Valimaki, Nelson Nogier, Caleb Jones, Josh Mahura


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals3300000017981100000063322000000116561.00017294600991291231390868843873381054224587342.86%12466.67%1937180152.03%907181949.86%715137052.19%173198016597431446722
2Americans312000001516-121100000101001010000056-120.333152540009912912313113868843873389737207411436.36%10460.00%0937180152.03%907181949.86%715137052.19%173198016597431446722
3Barracuda624000003033-33120000015150312000001518-340.33330477700991291231320686884387338225763811829931.03%19573.68%1937180152.03%907181949.86%715137052.19%173198016597431446722
4Bears301000201011-11010000014-32000002097240.6671016260099129123138886884387338104432290600.00%11190.91%0937180152.03%907181949.86%715137052.19%173198016597431446722
5Canucks220000001174110000006511100000052341.000111829009912912313778688438733855164382150.00%2150.00%0937180152.03%907181949.86%715137052.19%173198016597431446722
6Checkers20100100912-31000010045-11010000057-210.25091524009912912313628688438733862291444700.00%7271.43%0937180152.03%907181949.86%715137052.19%173198016597431446722
7Comets20200000611-51010000035-21010000036-300.00068140099129123135486884387338722624415360.00%12558.33%0937180152.03%907181949.86%715137052.19%173198016597431446722
8Condors6420000029227321000001413132100000159680.66729497800991291231320286884387338186746713929827.59%31487.10%1937180152.03%907181949.86%715137052.19%173198016597431446722
9Crunch20002000972100010003211000100065141.000918270099129123137286884387338672418367114.29%9277.78%0937180152.03%907181949.86%715137052.19%173198016597431446722
10Eagles3020100078-12020000046-21000100032120.33371118009912912313808688438733884172667700.00%130100.00%0937180152.03%907181949.86%715137052.19%173198016597431446722
11Griffins613002002633-73100020016142303000001019-940.33326426800991291231317586884387338191616214235720.00%31874.19%0937180152.03%907181949.86%715137052.19%173198016597431446722
12Icehogs31200000191901010000046-2211000001513220.3331932510099129123131008688438733811536166013646.15%8275.00%0937180152.03%907181949.86%715137052.19%173198016597431446722
13Islander20200000510-51010000046-21010000014-300.0005813009912912313608688438733863412561119.09%6183.33%0937180152.03%907181949.86%715137052.19%173198016597431446722
14Little Stars21000100972110000006331000010034-130.750916250099129123136886884387338602984712325.00%3166.67%0937180152.03%907181949.86%715137052.19%173198016597431446722
15Marlies5410000025131233000000176112110000087180.80025426700991291231317186884387338149573710918422.22%16381.25%0937180152.03%907181949.86%715137052.19%173198016597431446722
16Penguins211000006601010000023-11100000043120.50061218009912912313758688438733874112054700.00%10280.00%0937180152.03%907181949.86%715137052.19%173198016597431446722
17Phantoms31101000181621100000094520101000912-340.667183250009912912313109868843873389337325713215.38%11190.91%2937180152.03%907181949.86%715137052.19%173198016597431446722
18Punishers2110000010911010000024-21100000085320.5001017270099129123135986884387338642516444125.00%9277.78%0937180152.03%907181949.86%715137052.19%173198016597431446722
19Reign302000101215-32020000059-41000001076120.333121830009912912313104868843873389925285611545.45%13192.31%1937180152.03%907181949.86%715137052.19%173198016597431446722
20Rocket641000103428633000000181353110001016151100.83334589200991291231320686884387338196677112929724.14%30776.67%0937180152.03%907181949.86%715137052.19%173198016597431446722
21Senators3300000015872200000010551100000053261.000152641009912912313898688438733810230166614428.57%8362.50%0937180152.03%907181949.86%715137052.19%173198016597431446722
22Silver Knights31200000141311010000026-421100000127520.33314253900991291231312486884387338953326528450.00%13284.62%0937180152.03%907181949.86%715137052.19%173198016597431446722
23Thunderbirds2020000068-21010000023-11010000045-100.000612180099129123135286884387338732910456116.67%5260.00%0937180152.03%907181949.86%715137052.19%173198016597431446722
24Wolfpack320010001156210010005321100000062461.00011182900991291231393868843873389429246717423.53%12191.67%0937180152.03%907181949.86%715137052.19%173198016597431446722
25Wranglers30200100711-41000010034-12020000047-310.1677142100991291231379868843873389729106514214.29%50100.00%0937180152.03%907181949.86%715137052.19%173198016597431446722
Total80323405540360337234018160240017115714401418031401891809870.544360608968009912912313260886884387338262288664517543228024.84%3066479.08%6937180152.03%907181949.86%715137052.19%173198016597431446722
_Since Last GM Reset80323405540360337234018160240017115714401418031401891809870.544360608968009912912313260886884387338262288664517543228024.84%3066479.08%6937180152.03%907181949.86%715137052.19%173198016597431446722
_Vs Conference50242001320247223242515700300127102252591301020120121-1570.570247414661009912912313164486884387338165557142110732236127.35%1944278.35%6937180152.03%907181949.86%715137052.19%173198016597431446722
_Vs Division241110002101191163127300200635581247000105661-5260.542119196315009912912313789868843873387982782385281223125.41%1112478.38%2937180152.03%907181949.86%715137052.19%173198016597431446722

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8087W136060896826082622886645175400
All Games
GPWLOTWOTL SOWSOLGFGA
8032345540360337
Home Games
GPWLOTWOTL SOWSOLGFGA
4018162400171157
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4014183140189180
Last 10 Games
WLOTWOTL SOWSOL
360100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3228024.84%3066479.08%6
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
868843873389912912313
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
937180152.03%907181949.86%715137052.19%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
173198016597431446722


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
11Barracuda5Moose8WR1BoxScore
29Moose6Rocket5WXXBoxScore
635Griffins5Moose4LXR1BoxScore
847Moose2Barracuda6LBoxScore
1058Condors5Moose7WR1BoxScore
1369Moose7Condors2WBoxScore
1687Rocket6Moose7WR1BoxScore
20109Marlies1Moose3WBoxScore
25131Senators2Moose5WBoxScore
26138Moose3Griffins8LR1BoxScore
29157Condors5Moose2LBoxScore
31170Moose4Phantoms8LBoxScore
34184Griffins5Moose4LXR1BoxScore
37199Moose6Griffins7LBoxScore
39208Moose5Bears4WXXBoxScore
40215Punishers4Moose2LBoxScore
44229Moose8Punishers5WBoxScore
46242Bears4Moose1LBoxScore
50261Moose3Marlies5LBoxScore
52265Wranglers4Moose3LXBoxScore
54280Moose1Griffins4LR1BoxScore
56291Penguins3Moose2LBoxScore
61312Moose5Senators3WBoxScore
62319Admirals3Moose6WBoxScore
66339Marlies2Moose6WBoxScore
67352Moose5Canucks2WBoxScore
70366Condors3Moose5WR1BoxScore
72380Moose5Admirals3WBoxScore
74391Canucks5Moose6WBoxScore
80415Moose9Icehogs6WBoxScore
81419Barracuda4Moose3LR1BoxScore
84435Moose4Bears3WXXBoxScore
85445Barracuda6Moose4LR1BoxScore
88465Moose5Phantoms4WXBoxScore
91472Phantoms4Moose9WBoxScore
93483Moose7Reign6WXXBoxScore
95496Rocket3Moose4WR1BoxScore
99521Islander6Moose4LBoxScore
101531Moose5Marlies2WBoxScore
104546Little Stars3Moose6WBoxScore
106559Moose3Comets6LBoxScore
109574Crunch2Moose3WXBoxScore
111582Moose6Wolfpack2WBoxScore
113593Moose5Condors2WR1BoxScore
115601Marlies3Moose8WBoxScore
117616Moose2Wranglers4LBoxScore
119627Moose6Admirals3WBoxScore
121632Wolfpack2Moose3WXBoxScore
123651Moose5Americans6LBoxScore
125658Americans4Moose2LBoxScore
127672Moose3Condors5LR1BoxScore
128682Icehogs6Moose4LBoxScore
131690Moose5Checkers7LBoxScore
133705Moose6Crunch5WXBoxScore
135714Rocket4Moose7WR1BoxScore
138731Moose1Islander4LBoxScore
139739Moose9Barracuda6WR1BoxScore
140744Griffins4Moose8WR1BoxScore
143765Thunderbirds3Moose2LBoxScore
145774Moose4Rocket6LR1BoxScore
146784Moose4Penguins3WBoxScore
148796Silver Knights6Moose2LBoxScore
150807Moose3Eagles2WXBoxScore
154822Eagles3Moose2LBoxScore
158842Senators3Moose5WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
159849Moose6Icehogs7LBoxScore
164869Moose3Little Stars4LXBoxScore
165873Wolfpack1Moose2WBoxScore
169894Comets5Moose3LBoxScore
170902Moose4Thunderbirds5LBoxScore
173918Moose2Wranglers3LBoxScore
175925Checkers5Moose4LXBoxScore
179947Reign5Moose3LBoxScore
181962Moose4Barracuda6LR1BoxScore
183972Americans6Moose8WBoxScore
185985Moose4Silver Knights6LBoxScore
188997Eagles3Moose2LBoxScore
1891002Moose8Silver Knights1WBoxScore
1971027Reign4Moose2LBoxScore
1981030Moose6Rocket4WR1BoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price7040
Attendance73,98537,435
Attendance PCT92.48%93.59%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2786 - 92.85% 175,254$7,010,166$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,551,451$ 2,110,000$ 2,085,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
10,498$ 2,597,580$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 1 15,224$ 15,224$




Moose Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Moose Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Moose Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Moose Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Moose Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA