Your STHS is out of Date! Please update your STHS version!
Login

Wranglers
GP: 80 | W: 39 | L: 30 | OTL: 11 | P: 89
GF: 312 | GA: 320 | PP%: 20.74% | PK%: 78.15%
GM : Steve Landry | Morale : 39 | Team Overall : 64
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Reign
42-28-10, 94pts
9
FINAL
3 Wranglers
39-30-11, 89pts
Team Stats
W4StreakW1
22-15-3Home Record19-16-5
20-13-7Home Record20-14-6
9-1-0Last 10 Games5-3-2
4.16Goals Per Game3.90
3.78Goals Against Per Game4.00
22.79%Power Play Percentage20.74%
79.02%Penalty Kill Percentage78.15%
Wranglers
39-30-11, 89pts
3
FINAL
2 Comets
36-36-8, 80pts
Team Stats
W1StreakL1
19-16-5Home Record20-16-4
20-14-6Home Record16-20-4
5-3-2Last 10 Games6-3-1
3.90Goals Per Game4.06
4.00Goals Against Per Game4.15
20.74%Power Play Percentage18.86%
78.15%Penalty Kill Percentage80.86%
Team Leaders
Goals
Evgeny Svechnikov
44
Assists
Rasmus Andersson
68
Points
Evgeny Svechnikov
106
Plus/Minus
Taylor Raddysh
14
Wins
Michael Hutchinson
34
Save Percentage
Michael Hutchinson
0.886

Team Stats
Goals For
312
3.90 GFG
Shots For
2630
32.88 Avg
Power Play Percentage
20.7%
62 GF
Offensive Zone Start
36.0%
Goals Against
320
4.00 GAA
Shots Against
2607
32.59 Avg
Penalty Kill Percentage
78.2%%
71 GA
Defensive Zone Start
37.3%
Team Info

General ManagerSteve Landry
CoachCraig MacTavish
DivisionFritz-Kraatz
ConferenceRobert-Lebel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,763
Season Tickets300


Roster Info

Pro Team32
Farm Team22
Contract Limit54 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Evgeny Svechnikov (R)X100.007232887287787775787190577160505356740221975,000$
2Peter Cehlarik (R)X100.006944807368747374757672617252484849700232850,000$
3Barclay GoodrowX100.007929756973707171676971726654523549690252900,000$
4Nico Sturm (R)X100.006629877278787765727559697051504559690233750,000$
5Ryan SpoonerX100.006431767473727768767966636555513359680261900,000$
6Jesper Bratt (R)X100.006546747370757171747270617347446459680203750,000$
7Eric Karlsson (R)X100.007833747078707065656773595650503859660242750,000$
8Ryan Donato (R)X100.007438756480657166746775496744444759660223800,000$
9Taylor Raddysh (R)X100.005946806470706070696267586743435962640201500,000$
10Vladislav Kamenev (R)X100.007131735172666869605975577344444856630223700,000$
11Tage Thompson (R)X100.005932846965786556657254625946455950620213700,000$
12Vitali Kravtsov (R)X100.006943726262587063616065536442416749610192500,000$
13Ivan Chekhovich (R)X100.006325754876555961586077376541416321590191500,000$
14Radim Zohorna (R)X100.005739746170736260555669445747454821590223600,000$
15Skyler Brind'Amour (R)X100.004433765154695647545554555441416221530191500,000$
16Rasmus Andersson (R)X100.0075378381727376834681687458634854457402211,500,000$
17Frank CorradoX100.007140757277747671596961716062533655700252850,000$
18Dominik Masin (R)X100.006831877071697257356346795353464821670222650,000$
19John GilmourX100.007034776863766975517257665848503021670251800,000$
20Trevor Carrick (R)X100.006238758166667576427555674449503221670243700,000$
21Erik Brannstrom (R)X98.255529727455537485418362724046427448660191500,000$
22Petteri LindbohmX100.006039756467677071466871695749543436660253750,000$
23Brandon Hickey (R)X100.006627846364646455366947785348453859650221600,000$
24Christian Jaros (R)X100.006729776562616265367150725445464356650222650,000$
25Darren Raddysh (R)X100.006325926560696348456737663950464821620221500,000$
Scratches
1Demetrios Koumontzis (R)X100.004128605549545055676258304740405820520182500,000$
2Filip Hallander (R)X100.004529675847494356445948394440406820500182500,000$
3Tim Berni (R)X100.005827574051495557185750343140406020480182500,000$
TEAM AVERAGE99.94643477656767676656686260584846504264
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Michael Hutchinson100.00707975757474747678717371662460740282995,000$
2Vitek Vanecek100.00637067606173775459766246464722650221600,000$
Scratches
1Collin Delia100.00725765726958515863556742425420600243700,000$
2Joel Hofer (R)100.00665263746950435861537240406941570182500,000$
TEAM AVERAGE100.0068656870686461626564695049493664
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Craig MacTavish78756975766752CAN562800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Evgeny SvechnikovWranglers (Cal)RW784462106-82201148135011418412.57%37152519.5512213356252000089352.44%1647621021.3948000892
2Nico SturmWranglers (Cal)C80365086-123201241891665110521.69%42168621.08917262120900071519049.24%23601521021.0201000631
3Rasmus AnderssonWranglers (Cal)D72156883-15320102126249911066.02%135189026.2581927602560115256110%07159000.8800000435
4Peter CehlarikWranglers (Cal)LW803642789740137972778017013.00%57160520.07336126100062371251.49%4354929100.9714000424
5Jesper BrattWranglers (Cal)LW80324476-11500137832325613413.79%24142517.82101525382561017992050.59%855515001.0749000237
6Ryan SpoonerWranglers (Cal)C8026366253401061241685911715.48%24128016.006511202121012534055.66%9813312000.9701000123
7Erik BrannstromWranglers (Cal)D80124860-16606610017261606.98%81153719.226152134266000010020%02950000.7800000023
8Barclay GoodrowWranglers (Cal)RW801821390520148123145429012.41%41144618.091671115100032692148.33%603322000.5400000132
9Eric KarlssonWranglers (Cal)LW801719361026012481147509011.56%1898412.3100031511241073236.36%223217000.7300000313
10Ryan DonatoWranglers (Cal)C80151833536010490128407811.72%18112414.06145819311211051049.18%5513112000.5900000120
11Frank CorradoWranglers (Cal)D7742327126351041128832424.55%92151119.63224918500009000100.00%12345000.3600000001
12Petteri LindbohmWranglers (Cal)D62621273555811207328428.22%104152524.601126122000118401100.00%12950000.3500010132
13Taylor RaddyshWranglers (Cal)RW80141226141754645101356713.86%2384110.51314551000000250.00%181113000.6200100023
14Vladislav KamenevWranglers (Cal)C7811617-5240654074214114.86%146348.1300002000041045.45%231104000.5400000110
15Vitali KravtsovWranglers (Cal)LW8010717-4200572777153212.99%176548.18000000000161046.15%1392000.5201000010
16Tage ThompsonWranglers (Cal)RW7851217-1112032535819408.62%186878.82000217000000041.18%171517000.4900000100
17Brandon HickeyWranglers (Cal)D80213151114053944722244.26%62127215.910000220111194000%01149000.2400000000
18Christian JarosWranglers (Cal)D8021012233572833416225.88%66112114.020000120001197010%0939000.2100010002
19Dominik MasinWranglers (Cal)D32189-7803837261173.85%4772522.660003780000118000%0616000.2500000012
20John GilmourWranglers (Cal)D41120402271114.29%15814.530000400015000%102000.6900000000
21Trevor CarrickWranglers (Cal)D4011-100057540%36416.000000400008000%123000.3100000000
22Chris BrownFlamesC1000100203010%01818.6000004000010033.33%91000000000000
23Filip HallanderWranglers (Cal)C1000000000000%000.700000000000000%00000000000000
24Skyler Brind'AmourWranglers (Cal)C3000000001000%082.690000000006000%50000000000000
25Ivan ChekhovichWranglers (Cal)LW3000000000000%031.260000000001000%00000000000000
26Radim ZohornaWranglers (Cal)LW3000020000000%020.730000000000000%00000000000000
Team Total or Average1456307522829-367620171417122630849145711.67%9242363616.23621091712882382448392128341550.47%4955550498140.70924120333840
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HutchinsonWranglers (Cal)68342660.8863.653763412292006975640.87516666214
2Vitek VanecekWranglers (Cal)164340.8734.217992056440238110.44491313000
3Joel HoferWranglers (Cal)91110.8335.24298002615683000.3333161000
Team Total or Average933930110.8803.844861613112602129675288080214


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Barclay GoodrowWranglers (Cal)RW251993-01-01No215 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm900,000$4,478$0$0$No900,000$--------No--------
Brandon HickeyWranglers (Cal)D221996-01-01Yes201 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm600,000$2,985$0$0$No------------------
Christian JarosWranglers (Cal)D221996-01-01Yes222 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm650,000$3,234$0$0$No700,000$--------No--------
Collin DeliaWranglers (Cal)G241994-01-01No207 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm700,000$3,483$0$0$No700,000$700,000$-------NoNo-------
Darren RaddyshWranglers (Cal)D221996-01-01Yes200 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Demetrios KoumontzisWranglers (Cal)LW182000-01-01Yes190 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
Dominik MasinWranglers (Cal)D221996-01-01Yes196 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm650,000$3,234$0$0$No700,000$--------No--------
Eric KarlssonWranglers (Cal)LW241994-01-01Yes161 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm750,000$3,731$0$0$No850,000$--------No--------
Erik BrannstromWranglers (Cal)D191999-01-01Yes185 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Evgeny SvechnikovWranglers (Cal)RW221996-01-01Yes208 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm975,000$4,851$0$0$No------------------
Filip HallanderWranglers (Cal)C182000-01-01Yes190 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
Frank CorradoWranglers (Cal)D251993-01-01No195 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm850,000$4,229$0$0$No900,000$--------No--------
Ivan ChekhovichWranglers (Cal)LW191999-01-01Yes187 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Jesper BrattWranglers (Cal)LW201998-01-01Yes185 Lbs5 ft10NoNoN/ANoNo3FalseFalsePro & Farm750,000$3,731$0$0$No900,000$950,000$-------NoNo-------
Joel HoferWranglers (Cal)G182000-01-01Yes179 Lbs6 ft5NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
John GilmourWranglers (Cal)D251993-01-01No185 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm800,000$3,980$0$0$No------------------
Michael HutchinsonWranglers (Cal)G281990-01-01No202 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm995,000$4,950$0$0$No995,000$--------No--------
Nico SturmWranglers (Cal)C231995-01-01Yes207 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm750,000$3,731$0$0$No900,000$950,000$-------NoNo-------
Peter CehlarikWranglers (Cal)LW231995-01-01Yes185 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm850,000$4,229$0$0$No900,000$--------No--------
Petteri LindbohmWranglers (Cal)D251993-01-01No209 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm750,000$3,731$0$0$No800,000$850,000$-------NoNo-------
Radim ZohornaWranglers (Cal)LW221996-01-01Yes229 Lbs6 ft6NoNoN/ANoNo3FalseFalsePro & Farm600,000$2,985$0$0$No650,000$700,000$-------NoNo-------
Rasmus AnderssonWranglers (Cal)D221996-01-01Yes214 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm1,500,000$7,463$0$0$No------------------
Ryan DonatoWranglers (Cal)C221996-01-01Yes193 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm800,000$3,980$0$0$No850,000$900,000$-------NoNo-------
Ryan SpoonerWranglers (Cal)C261992-01-01No181 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm900,000$4,478$0$0$No------------------
Skyler Brind'AmourWranglers (Cal)C191999-01-01Yes185 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Tage ThompsonWranglers (Cal)RW211997-01-01Yes218 Lbs6 ft7NoNoN/ANoNo3FalseFalsePro & Farm700,000$3,483$0$0$No800,000$900,000$-------NoNo-------
Taylor RaddyshWranglers (Cal)RW201998-01-01Yes198 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm500,000$2,488$0$0$No------------------
Tim BerniWranglers (Cal)D182000-01-01Yes181 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
Trevor CarrickWranglers (Cal)D241994-01-01Yes171 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm700,000$3,483$0$0$No750,000$825,000$-------NoNo-------
Vitali KravtsovWranglers (Cal)LW191999-01-01Yes186 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm500,000$2,488$0$0$No500,000$--------No--------Link
Vitek VanecekWranglers (Cal)G221996-01-01No190 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm600,000$2,985$0$0$No------------------
Vladislav KamenevWranglers (Cal)C221996-01-01Yes194 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm700,000$3,483$0$0$No800,000$825,000$-------NoNo-------
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3221.91195 Lbs6 ft11.94702,188$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Peter CehlarikNico SturmEvgeny Svechnikov40122
2Jesper BrattRyan SpoonerBarclay Goodrow30122
3Eric KarlssonRyan DonatoTaylor Raddysh20122
4Vitali KravtsovVladislav KamenevTage Thompson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonFrank Corrado40122
2Dominik MasinTrevor Carrick30122
3John GilmourErik Brannstrom20122
4Petteri LindbohmChristian Jaros10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Peter CehlarikNico SturmEvgeny Svechnikov60122
2Jesper BrattRyan SpoonerBarclay Goodrow40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonFrank Corrado60122
2Dominik MasinTrevor Carrick40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Evgeny SvechnikovPeter Cehlarik60122
2Barclay GoodrowNico Sturm40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonFrank Corrado60122
2Dominik MasinTrevor Carrick40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Evgeny Svechnikov60122Rasmus AnderssonFrank Corrado60122
2Peter Cehlarik40122Dominik MasinTrevor Carrick40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Evgeny SvechnikovPeter Cehlarik60122
2Barclay GoodrowNico Sturm40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Rasmus AnderssonFrank Corrado60122
2Dominik MasinTrevor Carrick40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Peter CehlarikNico SturmEvgeny SvechnikovRasmus AnderssonFrank Corrado
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Peter CehlarikNico SturmEvgeny SvechnikovRasmus AnderssonFrank Corrado
Extra Forwards
Normal PowerPlayPenalty Kill
Ivan Chekhovich, Radim Zohorna, Skyler Brind'AmourIvan Chekhovich, Radim ZohornaSkyler Brind'Amour
Extra Defensemen
Normal PowerPlayPenalty Kill
Brandon Hickey, Darren Raddysh, John GilmourBrandon HickeyDarren Raddysh, John Gilmour
Penalty Shots
Evgeny Svechnikov, Peter Cehlarik, Barclay Goodrow, Nico Sturm, Jesper Bratt
Goalie
#1 : Michael Hutchinson, #2 : Vitek Vanecek
Custom OT Lines Forwards
Evgeny Svechnikov, Peter Cehlarik, Barclay Goodrow, Nico Sturm, Jesper Bratt, Ryan Spooner, Ryan Spooner, Eric Karlsson, Ryan Donato, Taylor Raddysh, Vladislav Kamenev
Custom OT Lines Defensemen
Rasmus Andersson, Frank Corrado, Dominik Masin, Trevor Carrick, John Gilmour


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals31200000912-31010000012-121100000810-220.3339152400991128916918799597704610534166310330.00%8362.50%0890176750.37%935183251.04%676130751.72%168993117247611452719
2Americans3200001015692200000012481000001032161.0001524390099112891610187995977046883718689111.11%90100.00%0890176750.37%935183251.04%676130751.72%168993117247611452719
3Barracuda32001000161062100100014951100000021161.000162844009911289169487995977046972722609222.22%11281.82%0890176750.37%935183251.04%676130751.72%168993117247611452719
4Bears20200000510-51010000037-41010000023-100.000561100991128916608799597704663192447400.00%12283.33%0890176750.37%935183251.04%676130751.72%168993117247611452719
5Canucks20100001911-21000000167-11010000034-110.25091625009911289167687995977046693410411119.09%5180.00%0890176750.37%935183251.04%676130751.72%168993117247611452719
6Checkers210000101385100000106511100000073441.000132134009911289167887995977046762816365480.00%8275.00%0890176750.37%935183251.04%676130751.72%168993117247611452719
7Comets311000011116-51000000145-121100000711-430.5001120310099112891689879959770461035416804125.00%8450.00%0890176750.37%935183251.04%676130751.72%168993117247611452719
8Condors300001201312110000010321200001101010050.83313193200991128916114879959770469841147510220.00%7442.86%0890176750.37%935183251.04%676130751.72%168993117247611452719
9Crunch220000001165110000007341100000043141.000111728009911289165987995977046642022379111.11%10280.00%0890176750.37%935183251.04%676130751.72%168993117247611452719
10Eagles210001001174110000008351000010034-130.750111930009911289166787995977046802016518225.00%8187.50%0890176750.37%935183251.04%676130751.72%168993117247611452719
11Griffins312000001013-321100000910-11010000013-220.333101626009911289161028799597704610430245415213.33%12375.00%0890176750.37%935183251.04%676130751.72%168993117247611452719
12Icehogs320001001394110000005322100010086250.833132538009911289161138799597704610831225714535.71%11372.73%0890176750.37%935183251.04%676130751.72%168993117247611452719
13Islander30101100911-22010010069-31000100032130.500917260099112891689879959770461033526766116.67%130100.00%0890176750.37%935183251.04%676130751.72%168993117247611452719
14Little Stars30200100914-51000010067-12020000037-410.1679142320991128916938799597704610941186212325.00%9455.56%1890176750.37%935183251.04%676130751.72%168993117247611452719
15Marlies6210110126251311001001213-1310010011412280.6672645711099112891620887995977046179597513829620.69%31583.87%0890176750.37%935183251.04%676130751.72%168993117247611452719
16Moose320010001174220000007431000100043161.00011193000991128916978799597704679262863500.00%14285.71%1890176750.37%935183251.04%676130751.72%168993117247611452719
17Penguins4220000014113211000008532110000066040.500142337009911289161328799597704612441267921628.57%13376.92%0890176750.37%935183251.04%676130751.72%168993117247611452719
18Phantoms6320010025241312000001316-332000100128470.58325436810991128916203879959770461817482137291137.93%41978.05%1890176750.37%935183251.04%676130751.72%168993117247611452719
19Punishers2020000059-41010000024-21010000035-200.000571200991128916668799597704669251650800.00%8187.50%0890176750.37%935183251.04%676130751.72%168993117247611452719
20Reign1026010103350-17503010101325-12523000002025-580.40033558800991128916308879959770463131051011814349.30%421564.29%0890176750.37%935183251.04%676130751.72%168993117247611452719
21Rocket3100200015123100010007612100100086261.00015233800991128916101879959770461033828719111.11%14285.71%0890176750.37%935183251.04%676130751.72%168993117247611452719
22Senators3110000113121211000007521000000167-130.50013253800991128916104879959770469828185713430.77%90100.00%0890176750.37%935183251.04%676130751.72%168993117247611452719
23Silver Knights2020000069-31010000035-21010000034-100.00061016109911289166287995977046702214436116.67%7185.71%1890176750.37%935183251.04%676130751.72%168993117247611452719
24Thunderbirds2110000045-11010000025-31100000020220.500471101991128916588799597704657311644300.00%8187.50%0890176750.37%935183251.04%676130751.72%168993117247611452719
25Wolfpack20200000611-51010000025-31010000046-200.0006814009911289166587995977046672414447114.29%7185.71%0890176750.37%935183251.04%676130751.72%168993117247611452719
Total80273007754312320-840131603332166169-340141404422146151-5890.55631252283451991128916263087995977046260792468217142996220.74%3257178.15%4890176750.37%935183251.04%676130751.72%168993117247611452719
_Since Last GM Reset80273007754312320-840131603332166169-340141404422146151-5890.55631252283451991128916263087995977046260792468217142996220.74%3257178.15%4890176750.37%935183251.04%676130751.72%168993117247611452719
_Vs Conference491914064421991927251090312010399424950332296933640.65319933753620991128916163687995977046155353044810241954121.03%2094877.03%2890176750.37%935183251.04%676130751.72%168993117247611452719
_Vs Division2279022118499-151126011103854-1611530110146451230.5238414322720991128916719879959770466732382584561012120.79%1142974.56%1890176750.37%935183251.04%676130751.72%168993117247611452719

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8089W131252283426302607924682171451
All Games
GPWLOTWOTL SOWSOLGFGA
8027307754312320
Home Games
GPWLOTWOTL SOWSOLGFGA
4013163332166169
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4014144422146151
Last 10 Games
WLOTWOTL SOWSOL
431101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2996220.74%3257178.15%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
87995977046991128916
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
890176750.37%935183251.04%676130751.72%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
168993117247611452719


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
27Reign1Wranglers2WXXR1BoxScore
526Wranglers3Reign6LBoxScore
636Wranglers6Phantoms2WBoxScore
844Wranglers4Reign6LR1BoxScore
952Reign2Wranglers3WXBoxScore
1371Reign5Wranglers3LR1BoxScore
1581Wranglers8Marlies7WXBoxScore
1795Marlies4Wranglers3LXBoxScore
19107Wranglers3Admirals8LBoxScore
22119Wranglers1Little Stars3LBoxScore
24127Phantoms8Wranglers5LBoxScore
27145Wranglers3Phantoms4LXBoxScore
28153Wranglers5Reign3WR1BoxScore
29156Senators4Wranglers2LBoxScore
33176Wranglers4Condors5LXBoxScore
34182Marlies4Wranglers2LBoxScore
37200Wranglers4Marlies2WBoxScore
39207Griffins7Wranglers4LBoxScore
44232Thunderbirds5Wranglers2LBoxScore
47248Crunch3Wranglers7WBoxScore
50258Wranglers3Phantoms2WBoxScore
52265Wranglers4Moose3WXBoxScore
54279Penguins3Wranglers2LBoxScore
58297Wranglers2Little Stars4LBoxScore
60308Wranglers2Bears3LBoxScore
61311Canucks7Wranglers6LXXBoxScore
64332Wranglers3Silver Knights4LBoxScore
65337Checkers5Wranglers6WXXBoxScore
68353Wranglers6Condors5WXXBoxScore
69362Islander3Wranglers2LXBoxScore
72376Wranglers2Marlies3LXXBoxScore
74387Eagles3Wranglers8WBoxScore
76399Wranglers3Punishers5LBoxScore
78406Wranglers4Wolfpack6LBoxScore
79414Barracuda4Wranglers8WBoxScore
82429Wranglers1Reign7LR1BoxScore
84441Marlies5Wranglers7WBoxScore
86449Wranglers3Islander2WXBoxScore
89467Admirals2Wranglers1LBoxScore
94489Punishers4Wranglers2LBoxScore
96505Wranglers7Checkers3WBoxScore
98516Comets5Wranglers4LXXBoxScore
100526Wranglers3Americans2WXXBoxScore
103541Rocket6Wranglers7WXBoxScore
105555Wranglers5Admirals2WBoxScore
107566Wranglers2Thunderbirds0WBoxScore
109571Silver Knights5Wranglers3LBoxScore
114596Americans1Wranglers5WBoxScore
117616Moose2Wranglers4WBoxScore
121634Wranglers4Crunch3WBoxScore
122642Islander6Wranglers4LBoxScore
126665Condors2Wranglers3WXXBoxScore
129684Wranglers4Penguins2WBoxScore
131693Senators1Wranglers5WBoxScore
134710Wranglers2Barracuda1WBoxScore
135719Icehogs3Wranglers5WBoxScore
140740Little Stars7Wranglers6LXBoxScore
141750Wranglers3Canucks4LBoxScore
143766Phantoms6Wranglers4LBoxScore
145779Wranglers5Icehogs2WBoxScore
147789Bears7Wranglers3LBoxScore
150805Wranglers3Icehogs4LXBoxScore
153816Phantoms2Wranglers4WBoxScore
156830Wranglers1Griffins3LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
159845Griffins3Wranglers5WBoxScore
162859Wranglers7Reign3WR1BoxScore
164868Wranglers2Penguins4LBoxScore
165874Barracuda5Wranglers6WXBoxScore
169896Wolfpack5Wranglers2LBoxScore
173918Moose2Wranglers3WBoxScore
175927Wranglers4Rocket3WXBoxScore
177937Wranglers3Eagles4LXBoxScore
179948Penguins2Wranglers6WBoxScore
181960Wranglers4Rocket3WBoxScore
183973Reign8Wranglers2LR1BoxScore
184976Wranglers6Senators7LXXBoxScore
188998Americans3Wranglers7WBoxScore
1911011Wranglers4Comets9LBoxScore
1961024Reign9Wranglers3LR1BoxScore
1991036Wranglers3Comets2WBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price7040
Attendance73,56636,969
Attendance PCT91.96%92.42%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2763 - 92.11% 173,995$6,959,798$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,023,608$ 2,247,000$ 2,074,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
11,179$ 2,222,763$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 1 15,159$ 15,159$




Wranglers Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Wranglers Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Wranglers Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA