Your STHS is out of Date! Please update your STHS version!
Login

Marlies
GP: 24 | W: 13 | L: 9 | OTL: 2 | P: 28
GF: 99 | GA: 100 | PP%: 21.21% | PK%: 73.12%
GM : Pascal Landry | Morale : 42 | Team Overall : 65
Next Games #321 vs Thunderbirds
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Marlies
13-9-2, 28pts
5
FINAL
4 Punishers
12-8-2, 26pts
Team Stats
L1StreakL2
6-4-2Home Record4-7-1
7-5-0Home Record8-1-1
5-4-1Last 10 Games3-5-2
4.13Goals Per Game4.45
4.17Goals Against Per Game4.14
21.21%Power Play Percentage22.73%
73.12%Penalty Kill Percentage79.81%
Islander
13-9-3, 29pts
7
FINAL
2 Marlies
13-9-2, 28pts
Team Stats
W1StreakL1
5-5-1Home Record6-4-2
8-4-2Home Record7-5-0
5-3-2Last 10 Games5-4-1
3.68Goals Per Game4.13
3.56Goals Against Per Game4.17
22.92%Power Play Percentage21.21%
74.34%Penalty Kill Percentage73.12%
Thunderbirds
15-9-1, 31pts
Day 63
Marlies
13-9-2, 28pts
Team Stats
W1StreakL1
5-6-0Home Record6-4-2
10-3-1Away Record7-5-0
5-4-1Last 10 Games5-4-1
4.16Goals Per Game4.13
3.64Goals Against Per Game4.13
17.92%Power Play Percentage21.21%
81.55%Penalty Kill Percentage73.12%
Marlies
13-9-2, 28pts
Day 65
Checkers
11-9-3, 25pts
Team Stats
L1StreakW1
6-4-2Home Record7-4-1
7-5-0Away Record4-5-2
5-4-1Last 10 Games3-6-1
4.13Goals Per Game4.52
4.17Goals Against Per Game4.52
21.21%Power Play Percentage21.70%
73.12%Penalty Kill Percentage86.36%
Marlies
13-9-2, 28pts
Day 67
Phantoms
8-11-3, 19pts
Team Stats
L1StreakL1
6-4-2Home Record5-6-1
7-5-0Away Record3-5-2
5-4-1Last 10 Games5-5-0
4.13Goals Per Game3.91
4.17Goals Against Per Game3.91
21.21%Power Play Percentage22.73%
73.12%Penalty Kill Percentage78.82%
Team Leaders
Goals
Aleksi Saarela
24
Assists
Pierre-Olivier Joseph
27
Points
Aleksi Saarela
38
Plus/Minus
Pierre-Olivier Joseph
11
Wins
Logan Thompson
9
Save Percentage
Logan Thompson
0.871

Team Stats
Goals For
99
4.13 GFG
Shots For
692
28.83 Avg
Power Play Percentage
21.2%
21 GF
Offensive Zone Start
35.4%
Goals Against
100
4.17 GAA
Shots Against
742
30.92 Avg
Penalty Kill Percentage
73.1%%
25 GA
Defensive Zone Start
37.2%
Team Info

General ManagerPascal Landry
CoachGuy Boucher
DivisionFritz-Kraatz
ConferenceRobert-Lebel
Captain
Assistant #1Aleksi Saarela
Assistant #2


Arena Info

Capacity3,000
Attendance2,762
Season Tickets300


Roster Info

Pro Team32
Farm Team18
Contract Limit50 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Aleksi Saarela (R) (A)X100.007525808472767778727377677960505648730221900,000$
2Tyler Benson (R)X100.008143757782658176637677746156466035730211900,000$
3Martin Necas (R)X100.006734817562747675849079576349446848720201950,000$
4Mathieu Olivier (R)X100.008043787881657473697574696753495338720221900,000$
5Alex Formenton (R)X100.007423866887697372697282616150447148700202950,000$
6Joel Farabee (R)X100.005737808557726587746870648843428148700191500,000$
7Kole Sherwood (R)X100.008441737372638073627373686047464748690221900,000$
8Lias Andersson (R)X100.006237837073797069637767716249476041680212750,000$
9Matthew Highmore (R)X100.007321826671717473767370567148504537670232500,000$
10Hugh McGing (R)X100.007444746980577369547467606045465941660211500,000$
11Isac Lundestrom (R)X100.006034726272637264707377586743456848650201500,000$
12Arthur Kaliyev (R)X100.006541726858636758686666526640407848610182500,000$
13Pierre-Olivier Joseph (R)X100.006028839069787891458767745857447248740202975,000$
14Lucas Carlsson (R)X100.007538887474747369506960755655475548710221900,000$
15Rasmus Dahlin (R)X100.005935828961637288438267725244427948700191500,000$
16Keaton Thompson (R)X100.006639757665647669537664755955513948690241600,000$
17Dennis Gilbert (R)X100.007438787161686757487355774348483649680231500,000$
18Dmitri Samorukov (R)X100.006524847264637452396953774843435836660202500,000$
Scratches
1Otto Koivula (R)X93.345834696173706372716172537044445135640211750,000$
2Jakob Forsbacka-Karlsson (R)X100.007141687059635958645671595846463821620231550,000$
3Samuel Fagemo (R)X100.005426756466606268545875496141427121610192500,000$
4Jonathan Davidsson (R)X100.006122736264616063617257465844484621590222650,000$
5Vasili Podkolzin (R)X100.007634556675567160565661554740407021590182500,000$
6Jan Jenik (R)X100.006533646877576659546255514941416421580191500,000$
7Jonathan Gruden (R)X100.006446595864516660456259485041416319560191500,000$
8Blake Murray (R)X100.005921585059575057524956355640406920510182500,000$
9Jacob Bernard-Docker (R)X100.005943666166665764446156654741416733610191500,000$
10Xavier Bernard (R)X100.005430636750435468326745593741416419560191500,000$
TEAM AVERAGE99.76673474716865696958706662594745603765
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Maxime Lagace100.00707069757276797573706957543754720261900,000$
2Logan Thompson99.00826077827869617372608851486054700222800,000$
Scratches
1Veini Vehvilainen100.00737476605672726158807349495428650221500,000$
2Matthew Thiessen100.00593951656447545755465341416128540191500,000$
TEAM AVERAGE99.7571616871686667676564715048534165
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Guy Boucher73787278387865CAN444500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Aleksi SaarelaMarlies (TOR)C242414383180455197225324.74%1955423.12731010820002724049.51%824146011.3700000710
2Pierre-Olivier JosephMarlies (TOR)D23327301114033517735353.90%3063727.722571192022370000%02521000.9400000130
3Joel FarabeeMarlies (TOR)LW24111728460202781204713.58%641317.233471267000092043.48%23207001.3500000105
4Martin NecasMarlies (TOR)RW24161228-1160461574163721.62%1046819.542358760002222161.76%34148011.1900000330
5Mathieu OlivierMarlies (TOR)RW24139223100282766203819.70%643818.284267740000311045.16%3197001.0000000012
6Tyler BensonMarlies (TOR)LW2061622-2220413653173211.32%842221.110663532023621055.00%40714011.0400000121
7Rasmus DahlinMarlies (TOR)D243161908014364121277.32%1749320.5815685700035510100.00%1815000.7700000110
8Lucas CarlssonMarlies (TOR)D2411415920376225694.00%3763926.63044293000080000%0726000.4700000001
9Alex FormentonMarlies (TOR)LW24661222043183183219.35%1435614.851012350111371147.83%2348000.6700000000
10Matthew HighmoreMarlies (TOR)C223710-180272212131125.00%727912.72112224000000051.72%17441000.7100000000
11Kole SherwoodMarlies (TOR)RW243472200302326192011.54%626811.2000005011040036.36%1151000.5200000110
12Lias AnderssonMarlies (TOR)C2123502024331761411.76%528413.52000143000080141.50%14752000.3500000000
13Otto KoivulaMarlies (TOR)LW161453605263516.67%3825.1500002000000045.45%1110001.2100000000
14Isac LundestromMarlies (TOR)C24404-510018201851222.22%325010.43000020000190044.33%9763000.3200000010
15Dennis GilbertMarlies (TOR)D24044-2135162314560%2029812.430000100005000%0311000.2700001000
16Dmitri SamorukovMarlies (TOR)D17044-9206199520%1622913.4901107000011000%016000.3500000000
17Arthur KaliyevMarlies (TOR)RW24134-1100258102710.00%41887.8400001000000050.00%623000.4200000010
18Keaton ThompsonMarlies (TOR)D24033-7140293013570%3047119.65011163000049000%0417000.1300000000
19Hugh McGingMarlies (TOR)LW19202-360229177811.76%41598.3700001000041062.50%842000.2500000001
20Jakob Forsbacka-KarlssonMarlies (TOR)C6000000202120%0162.7400000000000050.00%40000000000000
21Jacob Bernard-DockerMarlies (TOR)D13000240283010%51199.220000000004000%00000000000000
22Xavier BernardMarlies (TOR)D1000100000000%055.280000000000000%00000000000000
23Jonathan DavidssonMarlies (TOR)RW5000000000000%000.170000000000000%00000000000000
24Vasili PodkolzinMarlies (TOR)LW5000000000000%010.390000000001000%00000000000000
25Samuel FagemoMarlies (TOR)LW5000000000000%071.5000000000050050.00%21000000000000
Team Total or Average461991632629193551352069223640514.31%250708915.38213556677872461455813348.82%1436144158030.7400001151410
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Logan ThompsonMarlies (TOR)189510.8713.82102101655042613100177000
2Maxime LagaceMarlies (TOR)94410.8574.7642900342371080000717000
Team Total or Average2713920.8664.10145001997413693102424000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Aleksi SaarelaMarlies (TOR)C221997-01-01Yes200 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm900,000$632,673$0$0$No------------------
Alex FormentonMarlies (TOR)LW201999-01-01Yes195 Lbs6 ft3NoNoFree AgentNoNo22024-09-24FalseFalsePro & Farm950,000$667,822$0$0$No950,000$--------No--------
Arthur KaliyevMarlies (TOR)RW182001-01-01Yes209 Lbs6 ft2NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$351,485$0$0$No500,000$--------No--------Link
Blake MurrayMarlies (TOR)C182001-01-01Yes190 Lbs6 ft2NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$351,485$0$0$No500,000$--------No--------Link
Dennis GilbertMarlies (TOR)D231996-01-01Yes216 Lbs6 ft2NoNoFree AgentNoNo12024-09-24FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Dmitri SamorukovMarlies (TOR)D201999-01-01Yes188 Lbs6 ft3NoNoFree AgentNoNo22024-09-24FalseFalsePro & Farm500,000$351,485$0$0$No500,000$--------No--------
Hugh McGingMarlies (TOR)LW211998-01-01Yes176 Lbs5 ft8NoNoN/ANoNo1FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Isac LundestromMarlies (TOR)C201999-01-01Yes193 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Jacob Bernard-DockerMarlies (TOR)D192000-01-01Yes190 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Jakob Forsbacka-KarlssonMarlies (TOR)C231996-01-01Yes184 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm550,000$386,634$0$0$No------------------
Jan JenikMarlies (TOR)RW192000-01-01Yes185 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Joel FarabeeMarlies (TOR)LW192000-01-01Yes180 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Jonathan DavidssonMarlies (TOR)RW221997-01-01Yes181 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm650,000$456,931$0$0$No650,000$--------No--------
Jonathan GrudenMarlies (TOR)C192000-01-01Yes172 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Keaton ThompsonMarlies (TOR)D241995-01-01Yes185 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm600,000$421,782$0$0$No------------------
Kole SherwoodMarlies (TOR)RW221997-01-01Yes212 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm900,000$632,673$0$0$No------------------
Lias AnderssonMarlies (TOR)C211998-01-01Yes185 Lbs6 ft1NoNoFree Agent2024-08-01NoNo22024-09-24FalseFalsePro & Farm750,000$527,228$0$0$No850,000$--------No--------
Logan ThompsonMarlies (TOR)G221997-01-01No201 Lbs6 ft4NoNoFree AgentNoNo22024-09-24FalseFalsePro & Farm800,000$562,376$0$0$No900,000$--------No--------
Lucas CarlssonMarlies (TOR)D221997-01-01Yes190 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm900,000$632,673$0$0$No------------------
Martin NecasMarlies (TOR)RW201999-01-01Yes189 Lbs6 ft2NoNoFree AgentNoNo12024-09-24FalseFalsePro & Farm950,000$667,822$0$0$No------------------
Mathieu OlivierMarlies (TOR)RW221997-01-01Yes209 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm900,000$632,673$0$0$No------------------
Matthew HighmoreMarlies (TOR)C231996-01-01Yes188 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm500,000$351,485$0$0$No500,000$--------No--------
Matthew ThiessenMarlies (TOR)G192000-01-01No208 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Maxime LagaceMarlies (TOR)G261993-01-01No190 Lbs6 ft0NoNoFree AgentNoNo12024-09-24FalseFalsePro & Farm900,000$632,673$0$0$No------------------
Otto Koivula (Out of Payroll)Marlies (TOR)LW211998-01-01Yes220 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm750,000$527,228$0$0$Yes------------------
Pierre-Olivier JosephMarlies (TOR)D201999-01-01Yes185 Lbs6 ft2NoNoFree AgentNoNo22024-09-24FalseFalsePro & Farm975,000$685,396$0$0$No1,750,000$--------No--------
Rasmus DahlinMarlies (TOR)D192000-01-01Yes202 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Samuel FagemoMarlies (TOR)LW192000-01-01Yes201 Lbs6 ft0NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$351,485$0$0$No500,000$--------No--------Link
Tyler BensonMarlies (TOR)LW211998-01-01Yes190 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm900,000$632,673$0$0$No------------------
Vasili PodkolzinMarlies (TOR)LW182001-01-01Yes190 Lbs6 ft1NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$351,485$0$0$No500,000$--------No--------Link
Veini VehvilainenMarlies (TOR)G221997-01-01No174 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Xavier BernardMarlies (TOR)D192000-01-01Yes200 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm500,000$351,485$0$0$No------------------
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3220.72193 Lbs6 ft11.34652,344$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tyler BensonAleksi SaarelaMartin Necas40122
2Joel FarabeeMatthew HighmoreMathieu Olivier30122
3Alex FormentonLias AnderssonKole Sherwood20122
4Hugh McGingIsac LundestromArthur Kaliyev10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Lucas CarlssonPierre-Olivier Joseph40122
2Rasmus DahlinKeaton Thompson30122
3Dennis GilbertDmitri Samorukov20122
4Pierre-Olivier JosephRasmus Dahlin10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joel FarabeeAleksi SaarelaMartin Necas60122
2Tyler BensonLias AnderssonMathieu Olivier40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Pierre-Olivier JosephLucas Carlsson60122
2Rasmus DahlinKeaton Thompson40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Aleksi SaarelaTyler Benson60122
2Martin NecasMathieu Olivier40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Pierre-Olivier JosephLucas Carlsson60122
2Rasmus DahlinKeaton Thompson40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Aleksi Saarela60122Pierre-Olivier JosephLucas Carlsson60122
2Tyler Benson40122Rasmus DahlinKeaton Thompson40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Aleksi SaarelaTyler Benson60122
2Martin NecasMathieu Olivier40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Pierre-Olivier JosephLucas Carlsson60122
2Rasmus DahlinKeaton Thompson40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tyler BensonAleksi SaarelaMartin NecasPierre-Olivier JosephLucas Carlsson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tyler BensonAleksi SaarelaMartin NecasPierre-Olivier JosephLucas Carlsson
Extra Forwards
Normal PowerPlayPenalty Kill
Joel Farabee, Mathieu Olivier, Aleksi SaarelaAlex Formenton, Martin NecasMathieu Olivier
Extra Defensemen
Normal PowerPlayPenalty Kill
Rasmus Dahlin, Dmitri Samorukov, Pierre-Olivier JosephDennis GilbertDmitri Samorukov, Rasmus Dahlin
Penalty Shots
Aleksi Saarela, Tyler Benson, Martin Necas, Mathieu Olivier, Joel Farabee
Goalie
#1 : Logan Thompson, #2 : Maxime Lagace
Custom OT Lines Forwards
Aleksi Saarela, Tyler Benson, Martin Necas, Mathieu Olivier, Joel Farabee, Alex Formenton, Alex Formenton, Kole Sherwood, Lias Andersson, Hugh McGing, Isac Lundestrom
Custom OT Lines Defensemen
Pierre-Olivier Joseph, Rasmus Dahlin, Lucas Carlsson, Keaton Thompson, Dmitri Samorukov


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans10001000431100010004310000000000021.0004711003334293252312242298297421500.00%20100.00%024050247.81%26752850.57%19438949.87%517285498221436222
2Barracuda2010010049-51000010034-11010000015-410.2504711003334293402312242298662316429111.11%8275.00%024050247.81%26752850.57%19438949.87%517285498221436222
3Comets10001000651000000000001000100065121.000611170033342932723122422984011816100.00%4250.00%024050247.81%26752850.57%19438949.87%517285498221436222
4Crunch10001000541000000000001000100054121.0005813003334293262312242298278627200.00%30100.00%024050247.81%26752850.57%19438949.87%517285498221436222
5Firebirds1010000013-2000000000001010000013-200.00011210333429323231224229835114243133.33%20100.00%024050247.81%26752850.57%19438949.87%517285498221436222
6Griffins21100000811-31010000049-51100000042220.50081523003334293572312242298542416327342.86%8275.00%024050247.81%26752850.57%19438949.87%517285498221436222
7Gulls11000000725110000007250000000000021.000711180033342933123122422983376156233.33%3166.67%024050247.81%26752850.57%19438949.87%517285498221436222
8Icehogs1010000035-21010000035-20000000000000.00035800333429333231224229837188262150.00%4175.00%124050247.81%26752850.57%19438949.87%517285498221436222
9Islander1010000027-51010000027-50000000000000.00022400333429333231224229838134263266.67%220.00%024050247.81%26752850.57%19438949.87%517285498221436222
10Little Stars1010000038-5000000000001010000038-500.00034700333429327231224229839111815000%9366.67%024050247.81%26752850.57%19438949.87%517285498221436222
11Moose21100000972211000009720000000000020.50091322003334293522312242298642326517114.29%13192.31%124050247.81%26752850.57%19438949.87%517285498221436222
12Phantoms321000001394110000005052110000089-140.6671321340133342939223122422987215227619210.53%10280.00%024050247.81%26752850.57%19438949.87%517285498221436222
13Punishers11000000541000000000001100000054121.00058130033342934223122422982268215240.00%4175.00%024050247.81%26752850.57%19438949.87%517285498221436222
14Rockets21100000963110000006241010000034-120.50091625003334293612312242298562115549111.11%5340.00%024050247.81%26752850.57%19438949.87%517285498221436222
15Senators11000000431000000000001100000043121.000471100333429332231224229831176229222.22%3166.67%024050247.81%26752850.57%19438949.87%517285498221436222
16Wranglers320001001614221000100111101100000053250.8331627430033342939123122422989935264512325.00%13469.23%024050247.81%26752850.57%19438949.87%517285498221436222
Total241090320099100-1125401200545041255020004550-5280.583991632621133342936922312242298742250193513992121.21%932573.12%224050247.81%26752850.57%19438949.87%517285498221436222
_Since Last GM Reset241090320099100-1125401200545041255020004550-5280.583991632621133342936922312242298742250193513992121.21%932573.12%224050247.81%26752850.57%19438949.87%517285498221436222
_Vs Conference1896012007769811530120052439743000002526-1220.611771292060133342935142312242298541190145384851618.82%691775.36%224050247.81%26752850.57%19438949.87%517285498221436222
_Vs Division852001003829943000100221394220000016160110.68838641020133342932442312242298227716317540615.00%28967.86%024050247.81%26752850.57%19438949.87%517285498221436222

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2428L19916326269274225019351311
All Games
GPWLOTWOTL SOWSOLGFGA
24109320099100
Home Games
GPWLOTWOTL SOWSOLGFGA
125412005450
Visitor Games
GPWLOTWOTL SOWSOLGFGA
125520004550
Last 10 Games
WLOTWOTL SOWSOL
243100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
992121.21%932573.12%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
23122422983334293
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
24050247.81%26752850.57%19438949.87%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
517285498221436222


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
12Marlies3Little Stars8LBoxScore
522Moose5Marlies3LBoxScore
732Wranglers7Marlies6LXR1BoxScore
942Marlies4Senators3WBoxScore
1362Rockets2Marlies6WR1BoxScore
1571Marlies3Rockets4LBoxScore
1886Phantoms0Marlies5WR1BoxScore
1994Marlies1Barracuda5LBoxScore
21104Marlies5Wranglers3WR1BoxScore
22113Marlies6Phantoms2WBoxScore
25128Moose2Marlies6WBoxScore
28144Wranglers4Marlies5WR1BoxScore
30157Marlies4Griffins2WBoxScore
32165Marlies2Phantoms7LR1BoxScore
34177Icehogs5Marlies3LBoxScore
37192Marlies5Crunch4WXBoxScore
39203Gulls2Marlies7WBoxScore
41209Marlies6Comets5WXBoxScore
46229Griffins9Marlies4LBoxScore
49247Americans3Marlies4WXBoxScore
51257Marlies1Firebirds3LBoxScore
54275Barracuda4Marlies3LXBoxScore
57288Marlies5Punishers4WBoxScore
59300Islander7Marlies2LBoxScore
63321Thunderbirds-Marlies-
65329Marlies-Checkers-
67342Marlies-Phantoms-
70356Moose-Marlies-
72369Marlies-Bears-
73380Admirals-Marlies-
78399Wranglers-Marlies-
80413Marlies-Wolfpack-
82421Marlies-Griffins-
83430Eagles-Marlies-
86444Marlies-Icehogs-
89456Admirals-Marlies-
93479Condors-Marlies-
95488Marlies-Wranglers-
98503Penguins-Marlies-
103525Canucks-Marlies-
105533Marlies-Wranglers-
108550Checkers-Marlies-
110565Marlies-Thunderbirds-
112573Marlies-Rockets-
114581Wolfpack-Marlies-
116595Marlies-Rockets-
118603Marlies-Americans-
119613Senators-Marlies-
123628Marlies-Gulls-
125639Bears-Marlies-
129661Comets-Marlies-
131674Marlies-Islander-
132684Marlies-Condors-
134692Rockets-Marlies-
137709Marlies-Eagles-
138719Rockets-Marlies-
142739Crunch-Marlies-
143745Marlies-Little Stars-
146763Condors-Marlies-
148773Marlies-Crunch-
151791Gulls-Marlies-
153802Marlies-Penguins-
156814Icehogs-Marlies-
158825Marlies-Barracuda-
160833Marlies-Americans-
162847Punishers-Marlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
166869Little Stars-Marlies-
168879Marlies-Little Stars-
171893Little Stars-Marlies-
172899Marlies-Barracuda-
174908Marlies-Admirals-
175917Marlies-Canucks-
177927Marlies-Moose-
178935Thunderbirds-Marlies-
183959Firebirds-Marlies-
187977Firebirds-Marlies-
192999Phantoms-Marlies-
1931005Marlies-Senators-
1961021Phantoms-Marlies-
2001036Marlies-Senators-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price7040
Attendance22,03811,103
Attendance PCT91.83%92.53%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
28 2762 - 92.06% 173,843$2,086,120$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
757,038$ 2,087,500$ 2,072,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,963$ 603,344$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
4,867,613$ 142 12,809$ 1,818,878$




Marlies Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Marlies Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Marlies Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA