Your STHS is out of Date! Please update your STHS version!
Login

Moose
GP: 24 | W: 11 | L: 11 | OTL: 2 | P: 24
GF: 103 | GA: 111 | PP%: 24.35% | PK%: 77.57%
GM : Pascal Verret | Morale : 36 | Team Overall : 65
Next Games #315 vs Icehogs
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Islander
13-10-3, 29pts
4
FINAL
6 Moose
11-11-2, 24pts
Team Stats
L1StreakL1
5-5-1Home Record6-5-1
8-5-2Home Record5-6-1
5-3-2Last 10 Games5-4-1
3.65Goals Per Game4.29
3.62Goals Against Per Game4.63
23.71%Power Play Percentage24.35%
75.00%Penalty Kill Percentage77.57%
Bears
10-10-2, 22pts
7
FINAL
3 Moose
11-11-2, 24pts
Team Stats
W3StreakL1
5-6-1Home Record6-5-1
5-4-1Home Record5-6-1
4-4-2Last 10 Games5-4-1
4.14Goals Per Game4.29
4.27Goals Against Per Game4.63
19.19%Power Play Percentage24.35%
74.55%Penalty Kill Percentage77.57%
Moose
11-11-2, 24pts
Day 62
Icehogs
15-7-1, 31pts
Team Stats
L1StreakW2
6-5-1Home Record7-4-1
5-6-1Away Record8-3-0
5-4-1Last 10 Games6-4-0
4.29Goals Per Game4.39
4.63Goals Against Per Game4.39
24.35%Power Play Percentage25.51%
77.57%Penalty Kill Percentage78.64%
Moose
11-11-2, 24pts
Day 64
Wranglers
14-9-1, 29pts
Team Stats
L1StreakOTW1
6-5-1Home Record7-4-1
5-6-1Away Record7-5-0
5-4-1Last 10 Games7-2-1
4.29Goals Per Game4.71
4.63Goals Against Per Game4.71
24.35%Power Play Percentage23.16%
77.57%Penalty Kill Percentage77.27%
Phantoms
9-11-3, 21pts
Day 65
Moose
11-11-2, 24pts
Team Stats
OTW1StreakL1
5-6-1Home Record6-5-1
4-5-2Away Record5-6-1
5-5-0Last 10 Games5-4-1
3.96Goals Per Game4.29
4.48Goals Against Per Game4.29
22.34%Power Play Percentage24.35%
78.65%Penalty Kill Percentage77.57%
Team Leaders
Goals
Nick Paul
17
Assists
Michael McLeod
18
Points
Michael McLeod
33
Plus/Minus
Kieffer Bellows
9
Wins
Filip Gustavsson
11
Save Percentage
Filip Gustavsson
0.867

Team Stats
Goals For
103
4.29 GFG
Shots For
762
31.75 Avg
Power Play Percentage
24.3%
28 GF
Offensive Zone Start
36.5%
Goals Against
111
4.63 GAA
Shots Against
775
32.29 Avg
Penalty Kill Percentage
77.6%%
24 GA
Defensive Zone Start
37.4%
Team Info

General ManagerPascal Verret
CoachJared Bednar
DivisionThayer-Tutt
ConferenceRobert-Lebel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,804
Season Tickets300


Roster Info

Pro Team33
Farm Team18
Contract Limit51 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Michael McLeod (R)X100.006237778671756786717175697855515337730212975,000$
2Chase De Leo (R)X100.007130827474767368747977586652494742700231900,000$
3Nick Paul (R)X100.006949857176747371697576627152483642700241900,000$
4Anders Bjork (R)X100.006829778366726981637364617148474042680231800,000$
5Vinni Lettieri (R)X100.006639867477797559697963666152534143680242850,000$
6Jake Leschyshyn (R)X100.007736707179678174716964585945436342660204750,000$
7Boris Katchouk (R)X100.007242786966707475706368587044475942660214750,000$
8Kieffer Bellows (R)X100.006524836176697167696675507245465442650212550,000$
9Lukas Rousek (R)X100.005832797758605069546060457443445642600202500,000$
10Riley Damiani (R)X100.005723735752626364706859455341416521580191500,000$
11Aliaksei Protas (R)X100.006936616769537359495958555340408433580182500,000$
12Juuso Parssinen (R)X100.006634665358546359575860445940407220550182500,000$
13Ludwig Bystrom (R)X100.007623768077768178537364796476513542740251950,000$
14Matthew Benning (R)X100.007122827375776470527363765559543732710251900,000$
15Juuso Valimaki (R)X100.006229738270776981418255735452455842700212900,000$
16Caleb Jones (R)X100.007544676673724765426358754648464939670223750,000$
17Josh Mahura (R)X100.005838767764676679387258694748454945660212650,000$
18Adam Ginning (R)X100.006544646676714951326547584841415821610191500,000$
Scratches
1Mitchell Stephens (R)X100.005031967368846854756963665144444539650222600,000$
2Nathan Bastian (R)X100.005344766163756570837065536344464120640221500,000$
3Max Jones (R)X100.007146696873607765517264584943434720630211500,000$
4William Bitten (R)X100.007445656970597367536267546243444620630211500,000$
5Kristian Vesalainen (R)X100.007028695860626664696367606144445742620204500,000$
6Jonatan Berggren (R)X100.005629786358616467697157374641416020580191500,000$
7Jaret Anderson-Dolan (R)X100.006944576059446660505963514442425423570202550,000$
8Alexander Khovanov (R)X100.004423726246626254666352414741415620540191500,000$
9Nelson Nogier (R)X100.006441796970706666467062755152483920680231800,000$
10Joey Keane (R)X100.006642846667706370546951666143435241650201500,000$
11Jonny Tychonick (R)X100.005533726155446274275743624241416620580191500,000$
TEAM AVERAGE100.00653575696767676858686259584745523364
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Filip Gustavsson99.00727581716684856560837259475948720212950,000$
2Daniel Vladar100.00577054716270627468606146465548640221750,000$
Scratches
1Karel Vejmelka100.00766172817762596674517249504528670232650,000$
2Joey Daccord100.00706969535577776057735746454328640231500,000$
TEAM AVERAGE99.7569696969657371666567665047513867
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jared Bednar53568572375954CAN552950,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nick PaulMoose (Win)LW24171633-980342685204620.00%1353222.185101520981012632135.48%62178111.2401000302
2Michael McLeodMoose (Win)C18151833-3160164392345416.30%1441623.13551019701013621144.08%633195021.5900000140
3Anders BjorkMoose (Win)LW24917260120462270254512.86%1142317.64551011710003580180.00%10186001.2300000100
4Chase De LeoMoose (Win)C24101525140333861183716.39%1044118.392686710112680046.10%308155001.1301000030
5Jake LeschyshynMoose (Win)C2471219-6220323354193812.96%435414.761454280000391153.48%27399001.0701000111
6Ludwig BystromMoose (Win)D2431619-430040555229295.77%4466827.872579109011180100%03420000.5700000101
7Vinni LettieriMoose (Win)RW2411718-49522333382133.33%839416.44437480000002156.00%25611010.9100001110
8Juuso ValimakiMoose (Win)D2401616-1018018443519140%1848320.16022365000159000%0214000.6600000000
9Matthew BenningMoose (Win)D2421416-220050433613175.56%3966827.871346108011284000%01221000.4800000002
10Boris KatchoukMoose (Win)LW2457121120352745102811.11%427211.3700016000010042.86%7105000.8800000001
11Lukas RousekMoose (Win)RW247512-32014737112518.92%01817.580000000000100%2101001.3200000110
12Josh MahuraMoose (Win)D241670175102820865.00%2228812.0300001000013000%026000.4800100000
13Kieffer BellowsMoose (Win)RW2433696026171841716.67%326811.19000015000000028.57%1442000.4500000001
14Joey KeaneMoose (Win)D22055355122510350%1527612.5800000000029000%018000.3600001000
15Kristian VesalainenMoose (Win)LW21325040206202915.00%41647.8200003000040033.33%322000.6100000000
16Mitchell StephensMoose (Win)C20314100716187916.67%01668.3200000000040046.67%7522000.4800000000
17Caleb JonesMoose (Win)D24033-8415332417590%2648320.16000364000059000%0312000.1200010000
18Aliaksei ProtasMoose (Win)RW23213-6602014107520.00%72038.8600001000000033.33%912000.2900000010
19Jaret Anderson-DolanMoose (Win)C10101-34019542325.00%3727.25000000000120051.72%2900000.2800000000
20Riley DamianiMoose (Win)C2000-100000010%0168.1700000000000066.67%30000000000000
21Adam GinningMoose (Win)D2000-220111100%12512.680000000000000%00000000000000
22Juuso ParssinenMoose (Win)LW3000-300210020%2237.840000000000000%11000000000000
Team Total or Average43399164263-492382049050871824542013.79%248682915.7725436886799235146428546.35%1454168139140.77031129118
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Filip GustavssonMoose (Win)2311920.8674.2912730091684303210.6673231000
2Daniel VladarMoose (Win)60200.8006.32171001890340000123000
Team Total or Average29111120.8594.531445001097743372132424000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Adam GinningMoose (Win)D192000-01-01Yes196 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm500,000$349,010$0$0$No------------------
Alexander KhovanovMoose (Win)C192000-01-01Yes192 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm500,000$349,010$0$0$No------------------
Aliaksei ProtasMoose (Win)RW182001-01-01Yes225 Lbs6 ft2NoNoTrade2024-12-09NoNo22024-07-10FalseFalsePro & Farm500,000$349,010$0$0$No500,000$--------No--------Link
Anders BjorkMoose (Win)LW231996-01-01Yes190 Lbs6 ft0NoNoFree AgentNoNo12024-08-21FalseFalsePro & Farm800,000$558,416$0$0$No------------------
Boris KatchoukMoose (Win)LW211998-01-01Yes206 Lbs6 ft2NoNoFree AgentNoNo42024-08-21FalseFalsePro & Farm750,000$523,515$0$0$No800,000$850,000$950,000$------NoNoNo------
Caleb JonesMoose (Win)D221997-01-01Yes194 Lbs6 ft1NoNoFree AgentNoNo32024-08-21FalseFalsePro & Farm750,000$523,515$0$0$No800,000$850,000$-------NoNo-------
Chase De LeoMoose (Win)C231996-01-01Yes179 Lbs5 ft9NoNoN/ANoNo1FalseFalsePro & Farm900,000$628,218$0$0$No------------------
Daniel VladarMoose (Win)G221997-01-01No185 Lbs6 ft5NoNoN/ANoNo1FalseFalsePro & Farm750,000$523,515$0$0$No------------------
Filip GustavssonMoose (Win)G211998-01-01No183 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm950,000$663,119$0$0$No950,000$--------No--------
Jake LeschyshynMoose (Win)C201999-01-01Yes192 Lbs5 ft11NoNoFree AgentNoNo42024-08-21FalseFalsePro & Farm750,000$523,515$0$0$No800,000$850,000$950,000$------NoNoNo------
Jaret Anderson-DolanMoose (Win)C201999-01-01Yes200 Lbs5 ft11NoNoFree AgentNoNo22024-10-11FalseFalsePro & Farm550,000$383,911$0$0$No550,000$--------No--------
Joey DaccordMoose (Win)G231996-01-01No197 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm500,000$349,010$0$0$No------------------
Joey KeaneMoose (Win)D201999-01-01Yes187 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$349,010$0$0$No------------------
Jonatan BerggrenMoose (Win)LW192000-01-01Yes195 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm500,000$349,010$0$0$No------------------
Jonny TychonickMoose (Win)D192000-01-01Yes187 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$349,010$0$0$No------------------
Josh MahuraMoose (Win)D211998-01-01Yes185 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm650,000$453,713$0$0$No650,000$--------No--------
Juuso ParssinenMoose (Win)LW182001-01-01Yes212 Lbs6 ft3NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$349,010$0$0$No500,000$--------No--------Link
Juuso ValimakiMoose (Win)D211998-01-01Yes212 Lbs6 ft2NoNoFree AgentNoNo22024-08-21FalseFalsePro & Farm900,000$628,218$0$0$No950,000$--------No--------
Karel VejmelkaMoose (Win)G231996-01-01No224 Lbs6 ft4NoNoFree AgentNoNo22024-08-21FalseFalsePro & Farm650,000$453,713$0$0$No650,000$--------No--------
Kieffer BellowsMoose (Win)RW211998-01-01Yes194 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm550,000$383,911$0$0$No550,000$--------No--------
Kristian VesalainenMoose (Win)LW201999-01-01Yes207 Lbs6 ft3NoNoFree Agent2024-08-03NoNo42024-08-21FalseFalsePro & Farm500,000$349,010$0$0$No550,000$600,000$700,000$------NoNoNo------
Ludwig BystromMoose (Win)D251994-01-01Yes169 Lbs6 ft0NoNoFree AgentNoNo12024-08-21FalseFalsePro & Farm950,000$663,119$0$0$No------------------
Lukas RousekMoose (Win)RW201999-01-01Yes172 Lbs5 ft11NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$349,010$0$0$No500,000$--------No--------Link
Matthew BenningMoose (Win)D251994-01-01Yes180 Lbs6 ft0NoNoFree AgentNoNo12024-08-21FalseFalsePro & Farm900,000$628,218$0$0$No------------------
Max JonesMoose (Win)LW211998-01-01Yes220 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$349,010$0$0$No------------------
Michael McLeodMoose (Win)C211998-01-01Yes187 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm975,000$680,569$0$0$No975,000$--------No--------
Mitchell StephensMoose (Win)C221997-01-01Yes193 Lbs5 ft11NoNoFree AgentNoNo22024-08-21FalseFalsePro & Farm600,000$418,812$0$0$No700,000$--------No--------
Nathan BastianMoose (Win)RW221997-01-01Yes205 Lbs6 ft4NoNoFree AgentNoNo12024-08-21FalseFalsePro & Farm500,000$349,010$0$0$No------------------
Nelson NogierMoose (Win)D231996-01-01Yes191 Lbs6 ft2NoNoFree AgentNoNo12024-08-21FalseFalsePro & Farm800,000$558,416$0$0$No------------------
Nick PaulMoose (Win)LW241995-01-01Yes185 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm900,000$628,218$0$0$No------------------
Riley DamianiMoose (Win)C192000-01-01Yes170 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm500,000$349,010$0$0$No------------------
Vinni LettieriMoose (Win)RW241995-01-01Yes185 Lbs5 ft11NoNoFree AgentNoNo22024-08-21FalseFalsePro & Farm850,000$593,317$0$0$No850,000$--------No--------
William BittenMoose (Win)RW211998-01-01Yes179 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm500,000$349,010$0$0$No------------------
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3321.21193 Lbs6 ft11.70664,394$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nick PaulMichael McLeodKieffer Bellows40122
2Anders BjorkChase De LeoVinni Lettieri30122
3Boris KatchoukJake LeschyshynAliaksei Protas20311
4Juuso ParssinenRiley DamianiLukas Rousek10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ludwig BystromMatthew Benning40122
2Juuso ValimakiCaleb Jones30122
3Josh MahuraAdam Ginning20122
4Ludwig BystromMatthew Benning10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nick PaulMichael McLeodVinni Lettieri60122
2Anders BjorkChase De LeoKieffer Bellows40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ludwig BystromMatthew Benning60122
2Juuso ValimakiCaleb Jones40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Michael McLeodNick Paul60122
2Chase De LeoAnders Bjork40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ludwig BystromMatthew Benning60122
2Juuso ValimakiCaleb Jones40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Michael McLeod60122Ludwig BystromMatthew Benning60122
2Chase De Leo40122Juuso ValimakiCaleb Jones40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Michael McLeodNick Paul60122
2Chase De LeoAnders Bjork40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ludwig BystromMatthew Benning60122
2Juuso ValimakiCaleb Jones40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nick PaulMichael McLeodVinni LettieriLudwig BystromMatthew Benning
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nick PaulMichael McLeodVinni LettieriLudwig BystromMatthew Benning
Extra Forwards
Normal PowerPlayPenalty Kill
Anders Bjork, Boris Katchouk, Jake LeschyshynAnders Bjork, Boris KatchoukAnders Bjork
Extra Defensemen
Normal PowerPlayPenalty Kill
Caleb Jones, Josh Mahura, Ludwig BystromCaleb JonesCaleb Jones, Josh Mahura
Penalty Shots
Michael McLeod, Nick Paul, Chase De Leo, Vinni Lettieri, Anders Bjork
Goalie
#1 : Filip Gustavsson, #2 : Daniel Vladar
Custom OT Lines Forwards
Michael McLeod, Nick Paul, Chase De Leo, Vinni Lettieri, Anders Bjork, Boris Katchouk, Boris Katchouk, Jake Leschyshyn, Kieffer Bellows, Lukas Rousek, Aliaksei Protas
Custom OT Lines Defensemen
Ludwig Bystrom, Matthew Benning, Juuso Valimaki, Caleb Jones, Josh Mahura


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda312000001013-32110000089-11010000024-220.33310182800293341010026724724837528326216637.50%16287.50%024554045.37%26055347.02%18338647.41%509284509225427214
2Bears1010000037-41010000037-40000000000000.0003580029334102726724724834111893266.67%4325.00%024554045.37%26055347.02%18338647.41%509284509225427214
3Condors523000002427-321100000910-1312000001517-240.4002440641029334101462672472483176555011828621.43%24483.33%224554045.37%26055347.02%18338647.41%509284509225427214
4Eagles211000009901010000035-21100000064220.50091524002933410592672472483643314339111.11%7357.14%024554045.37%26055347.02%18338647.41%509284509225427214
5Griffins42100100161421100000072531100100912-350.625162541002933410115267247248312735478022313.64%21385.71%024554045.37%26055347.02%18338647.41%509284509225427214
6Gulls20100001713-61000000134-11010000049-510.250713200029334107126724724837217344110330.00%12558.33%024554045.37%26055347.02%18338647.41%509284509225427214
7Islander11000000642110000006420000000000021.0006111700293341041267247248336132206350.00%110.00%024554045.37%26055347.02%18338647.41%509284509225427214
8Little Stars21100000981211000009810000000000020.50091827002933410702672472483671617525240.00%60100.00%024554045.37%26055347.02%18338647.41%509284509225427214
9Marlies2110000079-2000000000002110000079-220.50071017002933410642672472483521714451317.69%7185.71%024554045.37%26055347.02%18338647.41%509284509225427214
10Phantoms11000000752110000007520000000000021.000713200029334103526724724834010122111100.00%6266.67%024554045.37%26055347.02%18338647.41%509284509225427214
11Rockets11000000523000000000001100000052321.00057120029334103426724724832512627200.00%30100.00%024554045.37%26055347.02%18338647.41%509284509225427214
Total24111100101103111-8126500001555411256001004857-9240.50010317527810293341076226724724837752472365081152824.35%1072477.57%224554045.37%26055347.02%18338647.41%509284509225427214
_Since Last GM Reset24111100101103111-8126500001555411256001004857-9240.50010317527810293341076226724724837752472365081152824.35%1072477.57%224554045.37%26055347.02%18338647.41%509284509225427214
_Vs Conference1888001017683-774200001343041146001004253-11180.500761262021029334105652672472483567174195394922021.74%891780.90%224554045.37%26055347.02%18338647.41%509284509225427214
_Vs Division1457001015767-106320000127252825001003042-12120.42957961531029334104322672472483450135163301761823.68%731480.82%224554045.37%26055347.02%18338647.41%509284509225427214

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2424L110317527876277524723650810
All Games
GPWLOTWOTL SOWSOLGFGA
2411110101103111
Home Games
GPWLOTWOTL SOWSOLGFGA
126500015554
Visitor Games
GPWLOTWOTL SOWSOLGFGA
125601004857
Last 10 Games
WLOTWOTL SOWSOL
540100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1152824.35%1072477.57%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
26724724832933410
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
24554045.37%26055347.02%18338647.41%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
509284509225427214


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
413Little Stars2Moose6WBoxScore
522Moose5Marlies3WBoxScore
839Barracuda7Moose5LR1BoxScore
1049Moose2Barracuda4LBoxScore
1259Moose4Gulls9LR1BoxScore
1466Griffins2Moose7WR1BoxScore
1885Condors3Moose5WBoxScore
2096Moose5Condors7LR1BoxScore
22112Gulls4Moose3LXXBoxScore
25128Moose2Marlies6LBoxScore
27135Moose2Griffins8LR1BoxScore
29146Little Stars6Moose3LBoxScore
31159Moose6Condors3WR1BoxScore
32171Moose5Rockets2WBoxScore
34178Phantoms5Moose7WBoxScore
37191Moose1Griffins2LXR1BoxScore
39202Condors7Moose4LBoxScore
41211Moose6Eagles4WBoxScore
46231Barracuda2Moose3WR1BoxScore
48241Moose6Griffins2WR1BoxScore
50253Moose4Condors7LBoxScore
51260Eagles5Moose3LBoxScore
55281Islander4Moose6WBoxScore
60304Bears7Moose3LBoxScore
62315Moose-Icehogs-
64324Moose-Wranglers-
65332Phantoms-Moose-
68351Moose-Canucks-
70356Moose-Marlies-
71362Canucks-Moose-
74382Barracuda-Moose-
78401Rockets-Moose-
81418Moose-Bears-
83427Moose-Wranglers-
85435Crunch-Moose-
88452Moose-Little Stars-
90460Little Stars-Moose-
92473Moose-Penguins-
94484Checkers-Moose-
99507Little Stars-Moose-
104527Moose-Firebirds-
105536Firebirds-Moose-
108549Moose-Gulls-
110561Wolfpack-Moose-
114580Moose-Americans-
115590Thunderbirds-Moose-
118601Moose-Gulls-
120614Penguins-Moose-
123630Moose-Icehogs-
125640Wolfpack-Moose-
127649Moose-Admirals-
129664Americans-Moose-
131671Moose-Comets-
133686Moose-Phantoms-
134695Gulls-Moose-
138717Wranglers-Moose-
140727Moose-Rockets-
142737Moose-Senators-
143747Punishers-Moose-
147767Admirals-Moose-
149781Moose-Americans-
151792Moose-Thunderbirds-
153798Moose-Admirals-
154805Griffins-Moose-
157821Moose-Crunch-
159829Griffins-Moose-
162848Moose-Checkers-
163857Condors-Moose-
Trade Deadline --- Trades can’t be done after this day is simulated!
167876Icehogs-Moose-
169884Moose-Islander-
173905Senators-Moose-
175915Moose-Punishers-
177927Marlies-Moose-
181951Senators-Moose-
185970Comets-Moose-
189985Moose-Barracuda-
191995Gulls-Moose-
1941012Moose-Barracuda-
1961022Icehogs-Moose-
2001038Moose-Wolfpack-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price7040
Attendance22,29711,349
Attendance PCT92.90%94.58%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
28 2804 - 93.46% 176,291$2,115,487$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
946,819$ 2,192,500$ 2,157,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
10,854$ 659,936$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
4,936,136$ 141 15,557$ 2,193,537$




Moose Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Moose Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Moose Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Moose Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Moose Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA