Your STHS is out of Date! Please update your STHS version!
Login

Wranglers
GP: 28 | W: 16 | L: 11 | OTL: 1 | P: 33
GF: 128 | GA: 118 | PP%: 21.24% | PK%: 78.05%
GM : Steve Landry | Morale : 46 | Team Overall : 64
Next Games #375 vs Gulls
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Penguins
14-11-2, 30pts
8
FINAL
2 Wranglers
16-11-1, 33pts
Team Stats
OTW1StreakW1
6-7-2Home Record8-5-1
8-4-0Home Record8-6-0
4-4-2Last 10 Games6-4-0
4.26Goals Per Game4.57
4.07Goals Against Per Game4.21
19.39%Power Play Percentage21.24%
81.82%Penalty Kill Percentage78.05%
Wranglers
16-11-1, 33pts
6
FINAL
3 Islander
15-13-3, 33pts
Team Stats
W1StreakL1
8-5-1Home Record5-8-1
8-6-0Home Record10-5-2
6-4-0Last 10 Games3-5-2
4.57Goals Per Game3.61
4.21Goals Against Per Game3.68
21.24%Power Play Percentage21.55%
78.05%Penalty Kill Percentage75.36%
Gulls
13-11-5, 31pts
Day 73
Wranglers
16-11-1, 33pts
Team Stats
W1StreakW1
7-5-2Home Record8-5-1
6-6-3Away Record8-6-0
6-3-1Last 10 Games6-4-0
4.00Goals Per Game4.57
4.07Goals Against Per Game4.57
18.56%Power Play Percentage21.24%
79.31%Penalty Kill Percentage78.05%
Wranglers
16-11-1, 33pts
Day 75
Admirals
13-12-4, 30pts
Team Stats
W1StreakW1
8-5-1Home Record5-7-2
8-6-0Away Record8-5-2
6-4-0Last 10 Games5-4-1
4.57Goals Per Game4.41
4.21Goals Against Per Game4.41
21.24%Power Play Percentage22.61%
78.05%Penalty Kill Percentage79.83%
Wranglers
16-11-1, 33pts
Day 78
Marlies
14-12-3, 31pts
Team Stats
W1StreakSOL1
8-5-1Home Record7-5-2
8-6-0Away Record7-7-1
6-4-0Last 10 Games3-5-2
4.57Goals Per Game3.79
4.21Goals Against Per Game3.79
21.24%Power Play Percentage19.83%
78.05%Penalty Kill Percentage73.87%
Team Leaders
Goals
Peter Cehlarik
30
Assists
Nico Sturm
28
Points
Peter Cehlarik
56
Plus/Minus
Peter Cehlarik
13
Wins
Vitek Vanecek
14
Save Percentage
Vitek Vanecek
0.885

Team Stats
Goals For
128
4.57 GFG
Shots For
936
33.43 Avg
Power Play Percentage
21.2%
24 GF
Offensive Zone Start
36.2%
Goals Against
118
4.21 GAA
Shots Against
883
31.54 Avg
Penalty Kill Percentage
78.0%%
27 GA
Defensive Zone Start
35.1%
Team Info

General ManagerSteve Landry
CoachCraig MacTavish
DivisionFritz-Kraatz
ConferenceRobert-Lebel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,800
Season Tickets300


Roster Info

Pro Team33
Farm Team20
Contract Limit53 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Peter CehlarikX100.007244827274787777757875657362544353730241900,000$
2Barclay GoodrowX100.008229777376757571676973756862543253720261900,000$
3Jesper Bratt (R)X100.006946747476787474757572647655465853710212900,000$
4Nico SturmX100.006929877481818069737863707160584153710242900,000$
5Phillip DanaultX100.007231757376757974716376707461553357700261900,000$
6Chandler StephensonX100.007138827667727372717468607650543641690251750,000$
7Ryan Donato (R)X100.007438776678677368766976526951454353670232850,000$
8Taylor Raddysh (R)X100.006247836972686373716568637045455453670213750,000$
9Tanner Jeannot (R)X100.007941667177647571627264636645465354660222600,000$
10Vladislav Kamenev (R)X100.007331765773697171645775627546454453650232800,000$
11Vitali Kravtsov (R)X100.007143766665647267656569596843436054640201500,000$
12Kaapo Kakko (R)X100.005844705763685368636258486840407923590182500,000$
13Frank CorradoX100.007040747476727770617163736069543353710261900,000$
14Dominik Masin (R)X100.007031887273737262386650805757494453700231700,000$
15Erik Brannstrom (R)X100.006129757764627988478667754653456553700202800,000$
16Brandon Hickey (R)X100.006927866466687059407247805754483544680233900,000$
17Christian Jaros (R)X100.007029816969667067427349765551493953680231700,000$
18Trevor CarrickX100.006238778167677677437655674450512953680252750,000$
Scratches
1Radim Zohorna (R)X100.005941766372756462585771476048464220610232650,000$
2Ivan Chekhovich (R)X100.006426785077576162606278406642425620600203600,000$
3Skyler Brind'Amour (R)X100.004634785355705848555657585642425520550203600,000$
4Demetrios Koumontzis (R)X100.004331625653575257696459334841415120530191500,000$
5Filip Hallander (R)X100.004631686049505057466150424641416020520191500,000$
6Lucas Feuk (R)X100.004735595649574954475548385740406920500182500,000$
7Cole Schwindt (R)X100.006037494767386654484560424940408220500182500,000$
8Petteri LindbohmX100.006139756869717372516772735956553119680262800,000$
9Darren Raddysh (R)X100.006527946762716751476938674251474220640233600,000$
10Zac Jones (R)X100.004534777954535974417758684143436820630192500,000$
11Yegor Zaitsev (R)X100.005833644972715057256045564043455020570212500,000$
12Tim Berni (R)X100.005930584253515758195851363341415420500191500,000$
TEAM AVERAGE100.00643575656866676656676260594947493864
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Vitek Vanecek100.00617269636371785762746448494360660233800,000$
2Joel Hofer100.00695666767055476164587442426360600191500,000$
Scratches
1Collin Delia100.00735765726960525863566843434926610252700,000$
TEAM AVERAGE100.0068626770676259596363694445524962
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Craig MacTavish78756975766752CAN572800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Peter CehlarikWranglers (Cal)LW28302656131004023140376621.43%1561021.79951419920003514148.94%473210031.8411000832
2Nico SturmWranglers (Cal)C2819284710004355104365518.27%1261622.012101210931124602048.54%8571812001.5300000470
3Barclay GoodrowWranglers (Cal)RW281323368280603076354617.11%1357820.6546109931011382248.89%452313001.2500000005
4Erik BrannstromWranglers (Cal)D2872431746035599432347.45%4266723.8335820103000028000%01825000.9300000121
5Chandler StephensonWranglers (Cal)C2871017-680553766345010.61%546216.531129710000220147.94%340119000.7300000101
6Frank CorradoWranglers (Cal)D28413176480504538132210.53%3876427.302796103000286000%01334100.4400000010
7Tanner JeannotWranglers (Cal)LW2871017860451941122517.07%434912.49000373000000023.08%1342000.9700000014
8Taylor RaddyshWranglers (Cal)RW2810515760211741102124.39%628610.2300005000002150.00%1027001.0500000102
9Jesper BrattWranglers (Cal)LW286814-918052248028577.50%944615.94134474000101158.82%17194000.6311000010
10Brandon HickeyWranglers (Cal)D2311213820242920795.00%3050522.00000054000058000%0311000.5100000002
11Christian JarosWranglers (Cal)D282101251803331278187.41%3657020.38112267011067200%0410000.4200000100
12Phillip DanaultWranglers (Cal)LW285611-880292448153310.42%1037513.42000060003981049.11%112149000.5900000010
13Ryan DonatoWranglers (Cal)C28369-616035212461712.50%436012.8800018000030058.14%4347000.5000000001
14Vitali KravtsovWranglers (Cal)LW282792752493610305.56%32248.03000000110110066.67%381000.8000001000
15Vladislav KamenevWranglers (Cal)C2843714015820101120.00%72107.5000000000000066.67%2132000.6700000000
16Dominik MasinWranglers (Cal)D281562002041176135.88%4046116.49000030001114000%0222000.2600000001
17Trevor CarrickWranglers (Cal)D281451100121923684.35%1932211.530000100002100%0511000.3100000001
18Petteri LindbohmWranglers (Cal)D5112-5403473314.29%58817.65101311000011000%031000.4500000000
19Kaapo KakkoWranglers (Cal)RW8000240333200%1587.3500000000000050.00%20100000000000
Team Total or Average48412320132446243559949890531051813.59%299796016.45243862868652351565615648.94%1510186191130.8122001161620
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Vitek VanecekWranglers (Cal)2414510.8853.60125120756513424100226210
2Joel HoferWranglers (Cal)112600.8185.694432042231127100.6673622000
Team Total or Average35161110.8674.141694401178824695132828210


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Barclay GoodrowWranglers (Cal)RW261993-01-01No215 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm900,000$579,208$0$0$No------------------
Brandon HickeyWranglers (Cal)D231996-01-01Yes201 Lbs6 ft2NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm900,000$579,208$0$0$No900,000$900,000$-------NoNo-------
Chandler StephensonWranglers (Cal)C251994-01-01No190 Lbs5 ft11NoNoTrade2024-10-20NoNo1FalseFalsePro & Farm750,000$482,673$0$0$No------------------
Christian JarosWranglers (Cal)D231996-01-01Yes222 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm700,000$450,495$0$0$No------------------
Cole SchwindtWranglers (Cal)RW182001-01-01Yes183 Lbs6 ft2NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$321,782$0$0$No500,000$--------No--------Link
Collin DeliaWranglers (Cal)G251994-01-01No207 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm700,000$450,495$0$0$No700,000$--------No--------
Darren RaddyshWranglers (Cal)D231996-01-01Yes200 Lbs6 ft1NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm600,000$386,139$0$0$No600,000$600,000$-------NoNo-------
Demetrios KoumontzisWranglers (Cal)LW192000-01-01Yes190 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm500,000$321,782$0$0$No------------------
Dominik MasinWranglers (Cal)D231996-01-01Yes196 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm700,000$450,495$0$0$No------------------
Erik BrannstromWranglers (Cal)D201999-01-01Yes185 Lbs5 ft10NoNoFree AgentNoNo22024-09-07FalseFalsePro & Farm800,000$514,851$0$0$No800,000$--------No--------
Filip HallanderWranglers (Cal)C192000-01-01Yes190 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$321,782$0$0$No------------------
Frank CorradoWranglers (Cal)D261993-01-01No195 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm900,000$579,208$0$0$No------------------
Ivan ChekhovichWranglers (Cal)LW201999-01-01Yes187 Lbs5 ft10NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm600,000$386,139$0$0$No600,000$600,000$-------NoNo-------
Jesper BrattWranglers (Cal)LW211998-01-01Yes185 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm900,000$579,208$0$0$No950,000$--------No--------
Joel HoferWranglers (Cal)G192000-01-01No179 Lbs6 ft5NoNoN/ANoNo1FalseFalsePro & Farm500,000$321,782$0$0$No------------------
Kaapo KakkoWranglers (Cal)RW182001-01-01Yes205 Lbs6 ft2NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$321,782$0$0$No500,000$--------No--------Link
Lucas FeukWranglers (Cal)LW182001-01-01Yes190 Lbs6 ft0NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$321,782$0$0$No500,000$--------No--------Link
Nico SturmWranglers (Cal)C241995-01-01No207 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm900,000$579,208$0$0$No950,000$--------No--------
Peter CehlarikWranglers (Cal)LW241995-01-01No185 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm900,000$579,208$0$0$No------------------
Petteri LindbohmWranglers (Cal)D261993-01-01No209 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm800,000$514,851$0$0$No850,000$--------No--------
Phillip DanaultWranglers (Cal)LW261993-01-01No201 Lbs6 ft0NoNoTrade2024-10-20NoNo12024-09-07FalseFalsePro & Farm900,000$579,208$0$0$No------------------
Radim ZohornaWranglers (Cal)LW231996-01-01Yes229 Lbs6 ft6NoNoN/ANoNo2FalseFalsePro & Farm650,000$418,317$0$0$No700,000$--------No--------
Ryan DonatoWranglers (Cal)C231996-01-01Yes193 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm850,000$547,030$0$0$No900,000$--------No--------
Skyler Brind'AmourWranglers (Cal)C201999-01-01Yes185 Lbs6 ft2NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm600,000$386,139$0$0$No600,000$600,000$-------NoNo-------
Tanner JeannotWranglers (Cal)LW221997-01-01Yes214 Lbs6 ft2NoNoTrade2024-10-20NoNo2FalseFalsePro & Farm600,000$386,139$0$0$No600,000$--------No--------
Taylor RaddyshWranglers (Cal)RW211998-01-01Yes198 Lbs6 ft3NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm750,000$482,673$0$0$No750,000$750,000$-------NoNo-------
Tim BerniWranglers (Cal)D192000-01-01Yes181 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$321,782$0$0$No------------------
Trevor CarrickWranglers (Cal)D251994-01-01No171 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm750,000$482,673$0$0$No825,000$--------No--------
Vitali KravtsovWranglers (Cal)LW201999-01-01Yes186 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm500,000$321,782$0$0$No------------------
Vitek VanecekWranglers (Cal)G231996-01-01No190 Lbs5 ft11NoNoFree AgentNoNo32024-09-07FalseFalsePro & Farm800,000$514,851$0$0$No800,000$800,000$-------NoNo-------
Vladislav KamenevWranglers (Cal)C231996-01-01Yes194 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm800,000$514,851$0$0$No825,000$--------No--------
Yegor ZaitsevWranglers (Cal)D211998-01-01Yes187 Lbs6 ft0NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$321,782$0$0$No500,000$--------No--------Link
Zac JonesWranglers (Cal)D192000-01-01Yes176 Lbs5 ft10NoNoAssign ManuallyNoNo22024-07-10FalseFalsePro & Farm500,000$321,782$0$0$No500,000$--------No--------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3321.97195 Lbs6 ft11.82689,394$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Peter CehlarikNico SturmBarclay Goodrow40122
2Jesper BrattChandler StephensonPhillip Danault30122
3Tanner JeannotRyan DonatoTaylor Raddysh20122
4Vitali KravtsovVladislav KamenevKaapo Kakko10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Erik BrannstromFrank Corrado40122
2Brandon HickeyChristian Jaros30122
3Dominik MasinTrevor Carrick20122
4Brandon HickeyFrank Corrado10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Peter CehlarikNico SturmBarclay Goodrow60122
2Jesper BrattChandler StephensonTanner Jeannot40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Erik BrannstromFrank Corrado60122
2Brandon HickeyChristian Jaros40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Phillip DanaultPeter Cehlarik60122
2Nico SturmBarclay Goodrow40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Dominik MasinFrank Corrado60122
2Brandon HickeyChristian Jaros40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Phillip Danault60122Dominik MasinFrank Corrado60122
2Nico Sturm40122Brandon HickeyChristian Jaros40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Nico SturmPeter Cehlarik60122
2Chandler StephensonPhillip Danault40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dominik MasinFrank Corrado60122
2Brandon HickeyChristian Jaros40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Peter CehlarikNico SturmBarclay GoodrowErik BrannstromFrank Corrado
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Peter CehlarikNico SturmBarclay GoodrowDominik MasinFrank Corrado
Extra Forwards
Normal PowerPlayPenalty Kill
Jesper Bratt, Peter Cehlarik, Nico SturmJesper Bratt, Chandler StephensonNico Sturm
Extra Defensemen
Normal PowerPlayPenalty Kill
Christian Jaros, Brandon Hickey, Dominik MasinDominik MasinErik Brannstrom, Christian Jaros
Penalty Shots
Jesper Bratt, Peter Cehlarik, Nico Sturm, Chandler Stephenson, Barclay Goodrow
Goalie
#1 : Vitek Vanecek, #2 : Joel Hofer
Custom OT Lines Forwards
Tanner Jeannot, Peter Cehlarik, Chandler Stephenson, Nico Sturm, Jesper Bratt, Taylor Raddysh, Taylor Raddysh, Phillip Danault, Ryan Donato, Barclay Goodrow, Vladislav Kamenev
Custom OT Lines Defensemen
Erik Brannstrom, Frank Corrado, Brandon Hickey, Christian Jaros, Dominik Masin


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals11000000633000000000001100000063321.00061218003236574332902873441730118185240.00%4175.00%031462350.40%31260451.66%23849248.37%597335591264505250
2Americans220000001165110000008441100000032141.0001117280032365746229028734417742116478112.50%8275.00%031462350.40%31260451.66%23849248.37%597335591264505250
3Bears11000000734110000007340000000000021.00071320003236574422902873441737442811100.00%20100.00%031462350.40%31260451.66%23849248.37%597335591264505250
4Crunch10001000211000000000001000100021121.00024600323657434290287344173614619400.00%3166.67%031462350.40%31260451.66%23849248.37%597335591264505250
5Eagles1000010023-11000010023-10000000000010.50024600323657433290287344173512624100.00%30100.00%031462350.40%31260451.66%23849248.37%597335591264505250
6Firebirds11000000624110000006240000000000021.00061117003236574302902873441731141423500.00%7271.43%131462350.40%31260451.66%23849248.37%597335591264505250
7Griffins1010000037-41010000037-40000000000000.0003580032365743429028734417315618300.00%3166.67%031462350.40%31260451.66%23849248.37%597335591264505250
8Gulls2020000069-31010000035-21010000034-100.00061117003236574712902873441757242043600.00%10190.00%031462350.40%31260451.66%23849248.37%597335591264505250
9Icehogs11000000422000000000001100000042221.0004590032365743429028734417341310186233.33%5180.00%031462350.40%31260451.66%23849248.37%597335591264505250
10Islander11000000633000000000001100000063321.0006101600323657435290287344172666195240.00%3166.67%031462350.40%31260451.66%23849248.37%597335591264505250
11Little Stars1010000057-21010000057-20000000000000.00058130032365743429028734417339623400.00%3166.67%031462350.40%31260451.66%23849248.37%597335591264505250
12Marlies302010001416-21010000035-2201010001111020.33314183200323657499290287344179134247213430.77%12375.00%031462350.40%31260451.66%23849248.37%597335591264505250
13Moose11000000422110000004220000000000021.00047110032365743029028734417307819500.00%40100.00%131462350.40%31260451.66%23849248.37%597335591264505250
14Penguins1010000028-61010000028-60000000000000.00023500323657441290287344173513726400.00%110.00%031462350.40%31260451.66%23849248.37%597335591264505250
15Phantoms21100000981110000005321010000045-120.500913220032365745529028734417552728458225.00%14471.43%031462350.40%31260451.66%23849248.37%597335591264505250
16Rockets63200010322933200001017125312000001517-280.66732538510323657419729028734417184756814131929.03%34779.41%031462350.40%31260451.66%23849248.37%597335591264505250
17Thunderbirds1010000057-2000000000001010000057-200.000581300323657439290287344173711621100.00%3166.67%031462350.40%31260451.66%23849248.37%597335591264505250
18Wolfpack11000000422000000000001100000042221.000471100323657433290287344172768203133.33%40100.00%031462350.40%31260451.66%23849248.37%597335591264505250
Total28131102110128118101475001106561414660200063576330.589128209337103236574936290287344178833062516241132421.24%1232778.05%231462350.40%31260451.66%23849248.37%597335591264505250
_Since Last GM Reset28131102110128118101475001106561414660200063576330.589128209337103236574936290287344178833062516241132421.24%1232778.05%231462350.40%31260451.66%23849248.37%597335591264505250
_Vs Conference19980101089827953000104338510450100046442220.5798914123010323657461529028734417586217188421852023.53%942078.72%131462350.40%31260451.66%23849248.37%597335591264505250
_Vs Division114501010555325310001025205614010003033-3120.545558413910323657435129028734417330136120258521528.85%601476.67%031462350.40%31260451.66%23849248.37%597335591264505250

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2833W112820933793688330625162410
All Games
GPWLOTWOTL SOWSOLGFGA
2813112110128118
Home Games
GPWLOTWOTL SOWSOLGFGA
147501106561
Visitor Games
GPWLOTWOTL SOWSOLGFGA
146620006357
Last 10 Games
WLOTWOTL SOWSOL
541000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1132421.24%1232778.05%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
290287344173236574
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
31462350.40%31260451.66%23849248.37%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
597335591264505250


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
26Rockets2Wranglers5WR1BoxScore
520Wranglers4Rockets8LBoxScore
732Wranglers7Marlies6WXBoxScore
837Wranglers4Rockets6LR1BoxScore
1051Rockets6Wranglers7WXXBoxScore
1361Wranglers4Phantoms5LBoxScore
1674Phantoms3Wranglers5WBoxScore
1890Wranglers7Rockets3WR1BoxScore
2099Wranglers6Admirals3WBoxScore
21104Marlies5Wranglers3LBoxScore
25127Rockets4Wranglers5WR1BoxScore
28144Wranglers4Marlies5LBoxScore
30152Gulls5Wranglers3LBoxScore
32170Griffins7Wranglers3LBoxScore
35182Wranglers3Americans2WBoxScore
39199Bears3Wranglers7WBoxScore
43217Eagles3Wranglers2LXBoxScore
45225Wranglers4Icehogs2WBoxScore
47234Wranglers4Wolfpack2WBoxScore
49246Firebirds2Wranglers6WBoxScore
51259Wranglers5Thunderbirds7LBoxScore
54276Americans4Wranglers8WBoxScore
58294Little Stars7Wranglers5LBoxScore
60305Wranglers2Crunch1WXBoxScore
64324Moose2Wranglers4WBoxScore
66334Wranglers3Gulls4LBoxScore
68347Penguins8Wranglers2LBoxScore
71365Wranglers6Islander3WBoxScore
73375Gulls-Wranglers-
75386Wranglers-Admirals-
78399Wranglers-Marlies-
79408Wolfpack-Wranglers-
83427Moose-Wranglers-
85438Wranglers-Condors-
87446Wranglers-Bears-
89458Wranglers-Condors-
90464Islander-Wranglers-
93480Wranglers-Americans-
95488Marlies-Wranglers-
99509Thunderbirds-Wranglers-
105533Marlies-Wranglers-
107546Wranglers-Griffins-
109556Barracuda-Wranglers-
111570Wranglers-Checkers-
114585Comets-Wranglers-
116592Wranglers-Little Stars-
119610Wranglers-Canucks-
120615Islander-Wranglers-
125636Griffins-Wranglers-
127653Wranglers-Punishers-
129660Condors-Wranglers-
132681Wranglers-Senators-
133688Checkers-Wranglers-
136708Icehogs-Wranglers-
138717Wranglers-Moose-
141733Canucks-Wranglers-
143748Wranglers-Checkers-
145759Wranglers-Phantoms-
147765Phantoms-Wranglers-
149784Icehogs-Wranglers-
153797Wranglers-Phantoms-
155811Phantoms-Wranglers-
158826Wranglers-Penguins-
160836Wranglers-Firebirds-
161845Crunch-Wranglers-
163855Wranglers-Islander-
Trade Deadline --- Trades can’t be done after this day is simulated!
166867Punishers-Wranglers-
169882Wranglers-Admirals-
171894Wranglers-Comets-
172896Admirals-Wranglers-
174913Wranglers-Rockets-
176924Rockets-Wranglers-
178934Wranglers-Barracuda-
180941Wranglers-Eagles-
183957Wranglers-Barracuda-
184962Rockets-Wranglers-
189987Senators-Wranglers-
1931006Bears-Wranglers-
1961023Senators-Wranglers-
1971027Wranglers-Rockets-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price7040
Attendance26,19513,007
Attendance PCT93.55%92.91%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
26 2800 - 93.34% 176,545$2,471,625$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,118,057$ 2,275,000$ 2,175,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
11,262$ 832,913$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
4,590,161$ 130 15,223$ 1,978,990$




Wranglers Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Wranglers Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Wranglers Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA