Login

Moose
GP: 80 | W: 37 | L: 29 | OTL: 14 | P: 88
GF: 342 | GA: 352 | PP%: 22.89% | PK%: 73.72%
GM : Pascal Verret | Morale : 30 | Team Overall : 64
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Wolfpack
43-33-4, 90pts
4
FINAL
2 Moose
37-29-14, 88pts
Team Stats
OTL1StreakL2
24-15-1Home Record20-14-6
19-18-3Away Record17-15-8
6-2-2Last 10 Games4-4-2
4.39Goals Per Game4.28
4.01Goals Against Per Game4.40
23.26%Power Play Percentage22.89%
75.85%Penalty Kill Percentage73.72%
Rampage
39-34-7, 85pts
6
FINAL
2 Moose
37-29-14, 88pts
Team Stats
W1StreakL2
20-16-4Home Record20-14-6
19-18-3Away Record17-15-8
5-5-0Last 10 Games4-4-2
3.75Goals Per Game4.28
3.90Goals Against Per Game4.40
21.31%Power Play Percentage22.89%
79.44%Penalty Kill Percentage73.72%
Team Leaders
Goals
Miro Aaltonen
56
Assists
Miro Aaltonen
85
Points
Miro Aaltonen
141
Plus/Minus
Nikolay Goldobin
14
Wins
Elvis Merzlikins
30
Save Percentage
Elvis Merzlikins
0.886

Team Stats
Goals For
342
4.28 GFG
Shots For
2631
32.89 Avg
Power Play Percentage
22.9%
76 GF
Offensive Zone Start
36.3%
Goals Against
352
4.40 GAA
Shots Against
2677
33.46 Avg
Penalty Kill Percentage
73.7%
82 GA
Defensive Zone Start
35.8%
Team Info

General ManagerPascal Verret
CoachAdams Oates
DivisionThayer-Tutt
ConferenceRobert-Lebel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,791
Season Tickets300


Roster Info

Pro Team32
Farm Team18
Contract Limit50 / 250
Prospects0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Miro Aaltonen (R)X100.0069298187747566797177736276535043507202311,250,000$
2Brendan Lemieux (R)X100.007745707478617576617673685852436539700204900,000$
3Frank Vatrano (R)X100.008845697774667876627565696550486044700221500,000$
4Justin Bailey (R)X100.007034836477726871757084556649435750690211900,000$
5Nathan Walker (R)X100.006831707569766676707370617346485546680222750,000$
6Roope Hintz (R)X100.007546747469627166647372647046446949680201500,000$
7Sam Reinhart (R)X100.006535767165707274798173545645436745680204990,000$
8Dominik Kahun (R)X100.005530806757757371848167535849446132660211500,000$
9Nikolay Goldobin (R)X100.006137807366675478616867657742426131660202750,000$
10Chase De Leo (R)X100.006230796761666963667871475843436334640202750,000$
11Mathieu Joseph (R)X100.007037646972567171536371636142426553640191500,000$
12Michael McLeod (R)X100.004537698053574580566167587140407220620182500,000$
13Troy Stetcher (R)X100.006532758871567682428857735255465539710221500,000$
14Mirco Mueller (R)X100.006922816971737369537260805350445430700211700,000$
15Ludwig Bystrom (R)X100.006923767668667275467155755553444536690221600,000$
16Tony DeAngelo (R)X100.005837788064647675398854745157435950690202800,000$
17Vladislav Gavrikov (R)X100.006745826368706567557360735853465839680211500,000$
18Erik Cernak (R)X100.007435666377795549326758714343427050650191500,000$
Scratches
1Rem Pitlick (R)X100.005529657959685177696056557042427333620192500,000$
2Julien Gauthier (R)X100.006028755372585863576772465943416319600192500,000$
3Carl Grundstrom (R)X100.006552815762676159605760596341438022600192500,000$
4Mitchell Stephens (R)X100.004725886864776246696256594441416719580191500,000$
5Nathan Bastian (R)X100.004738715559695964776257475741435920580192500,000$
6Max Jones (R)X100.006539656367507158456456524340406919570182500,000$
7David Kase (R)X100.006030585653556356595762426141415520550191500,000$
8Tim Gettinger (R)X100.005427634758565359495660296340406820520182500,000$
9Matthew Benning (R)X100.006522786664696362466757695146465020640221400,000$
10Jesse Graham (R)X100.005440707764576666466857694644444419630221450,000$
11Josh Mahura (R)X100.004934736952535673236550593640406719580182500,000$
TEAM AVERAGE100.00633474696665656858706360584643613364
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Elvis Merzlikins100.00628362737672708883726452465543730212900,000$
2Filip Gustavsson (R)100.00586269574673745046735840408248580182500,000$
Scratches
1Joey Daccord100.00646564454872725150655143426220580202550,000$
TEAM AVERAGE100.0061706558577272636070584543663763
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Adams Oates53568572375954CAN522950,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Miro AaltonenMoose (Win)C805685141322010713334411418816.28%33168621.092226486628222491299249.82%22727324031.675140001164
2Troy StetcherMoose (Win)D762281103-854011413722887949.65%95187224.63122234512780332120510.00%05564001.10000002112
3Brendan LemieuxMoose (Win)LW67353772-7980147762476510314.17%35137920.607101734188123111581243.18%1324430021.0413000415
4Iiro PakarinenJetsRW59343771-148014469189699817.99%30117619.931010202717531491142255.51%2364813001.2115000245
5Frank VatranoMoose (Win)RW612735620580165851804611015.00%35115118.88612182418501151032043.14%1024320001.0804000214
6Sam ReinhartMoose (Win)RW76283260-27360109602187012812.84%31128816.9591221391890001282257.27%1104117010.9300000211
7Roope HintzMoose (Win)LW65213455-3715131951605010013.13%35120818.5978151818400001032144.99%4893818000.9103001124
8Nathan WalkerMoose (Win)RW662727541138098661654310016.36%22113717.234711231591012954248.96%963218020.9515000333
9Nikolay GoldobinMoose (Win)LW70242145141006655150398116.00%14102614.6704491202133803136.36%1102516000.8807000412
10Tony DeAngeloMoose (Win)D7873845-173758514314662734.79%108189424.2841418262820111144110.00%05065000.4800000012
11Justin BaileyMoose (Win)LW751430441140110701104610212.73%29125916.8003371370112820052.56%782416000.7024000322
12Dominik KahunMoose (Win)C77221941-2020079103153678514.38%21127016.50448132020000321355.54%9921611000.6500000051
13Michael McLeodMoose (Win)C70201939-34004564132418915.15%3080311.48011160111731048.13%4282217000.9736000102
14Ludwig BystromMoose (Win)D8032831-255510214110639492.83%110174421.81145102240224247000.00%02157000.3600000001
15Mathieu JosephMoose (Win)RW76171229-23809958102365216.67%2788811.6901111610171091342.86%212119100.6501000011
16Chase De LeoMoose (Win)C68111728940433689275112.36%66649.77000021013752048.59%284168000.8400000210
17Rem PitlickMoose (Win)LW671111224180593890305712.22%86659.93000026000020141.43%701711000.6613000021
18Vladislav GavrikovMoose (Win)D80021211214068998028310.00%102165420.6801142260110192000.00%01743000.2501000000
19Erik CernakMoose (Win)D802171995601021025820213.45%77136517.070001560000188100.00%0543000.2800000100
20Mirco MuellerMoose (Win)D6451419-91601011196735227.46%101133920.930111431013161200.00%0837000.2800000220
21Matthew BenningMoose (Win)D301910280153421894.76%2638712.920000100008000.00%019000.5200000000
22Carl GrundstromMoose (Win)RW57167-32037192911193.45%104397.7200000000070080.00%517000.3200000000
23Mitchell StephensMoose (Win)C61235002442225.00%3508.4101104000040063.33%3000001.1900000001
24Jordan MartinookJetsLW5011-920948250.00%17615.30000030001160038.46%1331000.2600000000
25Julien GauthierMoose (Win)RW8011200343220.00%0769.58000000000000100.00%201000.2600000000
26Jesse GrahamMoose (Win)D1000100000000.00%055.550000000000000.00%001000.0000000000
27Josh MahuraMoose (Win)D3000000110000.00%2289.330000000000000.00%000000.0000000000
28Max JonesMoose (Win)LW8000-240431110.00%2648.110000000000000.00%010000.0000000000
Team Total or Average15533896341023-40763152045181830801040167212.63%9932660617.13861412273552999121628642282392150.05%5470622566180.771456001404441
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Elvis MerzlikinsMoose (Win)653021110.8863.693726202292008988210.500246414323
2Filip GustavssonMoose (Win)41151450.8744.112132601461158636330.524213442000
Team Total or Average1064535160.8823.8458598037531661624540.511459856323


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Brendan LemieuxMoose (Win)LW201996-01-01Yes215 Lbs6 ft1NoNoNo4Pro & Farm900,000$0$0$No1,200,000$2,000,000$2,800,000$
Carl GrundstromMoose (Win)RW191997-01-01Yes194 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$
Chase De LeoMoose (Win)C201996-01-01Yes179 Lbs5 ft9NoNoNo2Pro & Farm750,000$0$0$No750,000$
David KaseMoose (Win)RW191997-01-01Yes169 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Dominik KahunMoose (Win)C211995-01-01Yes175 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Elvis MerzlikinsMoose (Win)G211995-01-01No183 Lbs6 ft2NoNoNo2Pro & Farm900,000$0$0$No1,200,000$
Erik CernakMoose (Win)D191997-01-01Yes233 Lbs6 ft3NoNoNo1Pro & Farm500,000$0$0$No
Filip GustavssonMoose (Win)G181998-01-01Yes183 Lbs6 ft2NoNoNo2Pro & Farm500,000$0$0$No500,000$
Frank VatranoMoose (Win)RW221994-01-01Yes197 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Jesse GrahamMoose (Win)D221994-01-01Yes170 Lbs5 ft11NoNoNo1Pro & Farm450,000$0$0$No
Joey DaccordMoose (Win)G201996-01-01No197 Lbs6 ft2NoNoNo2Pro & Farm550,000$0$0$No600,000$
Josh MahuraMoose (Win)D181998-01-01Yes185 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$
Julien GauthierMoose (Win)RW191997-01-01Yes227 Lbs6 ft4NoNoNo2Pro & Farm500,000$0$0$No500,000$
Justin BaileyMoose (Win)LW211995-01-01Yes185 Lbs6 ft0NoNoNo1Pro & Farm900,000$0$0$No
Ludwig BystromMoose (Win)D221994-01-01Yes169 Lbs6 ft0NoNoNo1Pro & Farm600,000$0$0$No
Mathieu JosephMoose (Win)RW191997-01-01Yes190 Lbs6 ft1NoNoNo1Pro & Farm500,000$0$0$No
Matthew BenningMoose (Win)D221994-01-01Yes180 Lbs6 ft0NoNoNo1Pro & Farm400,000$0$0$No
Max JonesMoose (Win)LW181998-01-01Yes220 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$
Michael McLeodMoose (Win)C181998-01-01Yes187 Lbs6 ft2NoNoNo2Pro & Farm500,000$0$0$No500,000$
Mirco MuellerMoose (Win)D211995-01-01Yes185 Lbs6 ft4NoNoNo1Pro & Farm700,000$0$0$No
Miro AaltonenMoose (Win)C231993-01-01Yes185 Lbs5 ft10NoNoNo1Pro & Farm1,250,000$0$0$No
Mitchell StephensMoose (Win)C191997-01-01Yes193 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Nathan BastianMoose (Win)RW191997-01-01Yes205 Lbs6 ft4NoNoNo2Pro & Farm500,000$0$0$No500,000$
Nathan WalkerMoose (Win)RW221994-01-01Yes186 Lbs5 ft9NoNoNo2Pro & Farm750,000$0$0$No850,000$
Nikolay GoldobinMoose (Win)LW201996-01-01Yes196 Lbs5 ft11NoNoNo2Pro & Farm750,000$0$0$No850,000$
Rem PitlickMoose (Win)LW191997-01-01Yes196 Lbs5 ft11NoNoNo2Pro & Farm500,000$0$0$No500,000$
Roope HintzMoose (Win)LW201996-01-01Yes220 Lbs6 ft3NoNoNo1Pro & Farm500,000$0$0$No
Sam ReinhartMoose (Win)RW201996-01-01Yes192 Lbs6 ft1NoNoNo4Pro & Farm990,000$0$0$No990,000$1,600,000$2,500,000$
Tim GettingerMoose (Win)LW181998-01-01Yes220 Lbs6 ft6NoNoNo2Pro & Farm500,000$0$0$No500,000$
Tony DeAngeloMoose (Win)D201996-01-01Yes180 Lbs5 ft11NoNoNo2Pro & Farm800,000$0$0$No950,000$
Troy StetcherMoose (Win)D221994-01-01Yes186 Lbs5 ft10NoNoNo1Pro & Farm500,000$0$0$No
Vladislav GavrikovMoose (Win)D211995-01-01Yes213 Lbs6 ft3NoNoNo1Pro & Farm500,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3220.06194 Lbs6 ft11.66615,313$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brendan LemieuxMiro AaltonenSam Reinhart40122
2Justin BaileyDominik KahunFrank Vatrano30122
3Roope HintzMichael McLeodNathan Walker20122
4Nikolay GoldobinChase De LeoMathieu Joseph10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StetcherMirco Mueller40122
2Vladislav GavrikovTony DeAngelo30122
3Ludwig BystromErik Cernak20122
4Tony DeAngeloErik Cernak10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brendan LemieuxMiro AaltonenSam Reinhart60122
2Roope HintzDominik KahunFrank Vatrano40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StetcherTony DeAngelo60122
2Vladislav GavrikovLudwig Bystrom40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Michael McLeodMathieu Joseph60122
2Miro AaltonenFrank Vatrano40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mirco MuellerLudwig Bystrom60122
2Vladislav GavrikovErik Cernak40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Frank Vatrano60122Mirco MuellerLudwig Bystrom60122
2Miro Aaltonen40122Vladislav GavrikovErik Cernak40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Miro AaltonenSam Reinhart60122
2Dominik KahunFrank Vatrano40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Troy StetcherLudwig Bystrom60122
2Vladislav GavrikovTony DeAngelo40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Brendan LemieuxMiro AaltonenSam ReinhartTroy StetcherTony DeAngelo
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nathan WalkerMiro AaltonenMathieu JosephMirco MuellerLudwig Bystrom
Extra Forwards
Normal PowerPlayPenalty Kill
Justin Bailey, Sam Reinhart, Roope HintzNathan Walker, Justin BaileyNathan Walker
Extra Defensemen
Normal PowerPlayPenalty Kill
Mirco Mueller, Erik Cernak, Vladislav GavrikovVladislav GavrikovLudwig Bystrom, Vladislav Gavrikov
Penalty Shots
Nathan Walker, Miro Aaltonen, Nikolay Goldobin, Frank Vatrano, Roope Hintz
Goalie
#1 : Elvis Merzlikins, #2 : Filip Gustavsson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals403000101627-11302000101219-71010000048-420.250162440009011713014127847895868701544940757228.57%20575.00%0900177650.68%869175149.63%699136951.06%173797016877481454733
2Barracuda621000033334-1311000011314-1310000022020070.583335386009011713014208847895868702208360148311135.48%301066.67%1900177650.68%869175149.63%699136951.06%173797016877481454733
3Bears220000001073110000006421100000043141.0001016260090117130146484789586870782418514375.00%9366.67%0900177650.68%869175149.63%699136951.06%173797016877481454733
4Comets20001001101001000000156-11000100054130.7501014240090117130146384789586870732910359333.33%50100.00%0900177650.68%869175149.63%699136951.06%173797016877481454733
5Condors633000002022-2321000001110131200000912-360.50020345400901171301419484789586870197856012930413.33%30873.33%1900177650.68%869175149.63%699136951.06%173797016877481454733
6Crunch210000011091110000005321000000156-130.75010192900901171301478847895868704317184710330.00%9277.78%0900177650.68%869175149.63%699136951.06%173797016877481454733
7Devils2110000078-1110000003121010000047-320.50071118009011713014698478958687052178426233.33%40100.00%0900177650.68%869175149.63%699136951.06%173797016877481454733
8Eagles30100002611-51000000134-12010000137-420.333610160090117130149984789586870953112841417.14%6266.67%0900177650.68%869175149.63%699136951.06%173797016877481454733
9Griffins632010002122-1311010001011-1321000001111080.66721345500901171301417984789586870183455613929413.79%21576.19%2900177650.68%869175149.63%699136951.06%173797016877481454733
10Heat431000001697220000009272110000077060.7501627430090117130141258478958687012246309316425.00%15380.00%0900177650.68%869175149.63%699136951.06%173797016877481454733
11Icehogs311001001314-11000010056-12110000088030.5001322350090117130141058478958687012140166711436.36%8450.00%1900177650.68%869175149.63%699136951.06%173797016877481454733
12Little Stars412000011721-4311000011517-21010000024-230.3751729460090117130141238478958687014355228612433.33%12466.67%1900177650.68%869175149.63%699136951.06%173797016877481454733
13Marlies31100001151501010000046-221000001119230.500152338109011713014998478958687011919208114642.86%10460.00%0900177650.68%869175149.63%699136951.06%173797016877481454733
14Monsters32000001171342200000014951000000134-150.83317324900901171301498847895868701063834559111.11%17288.24%0900177650.68%869175149.63%699136951.06%173797016877481454733
15Penguins2110000078-11010000036-31100000042220.500713200090117130147384789586870501416509222.22%8362.50%0900177650.68%869175149.63%699136951.06%173797016877481454733
16Phantoms312000001014-41100000064220200000410-620.3331014240090117130148384789586870118281878800.00%9188.89%0900177650.68%869175149.63%699136951.06%173797016877481454733
17Punishers2010010069-31000010034-11010000035-210.250610161090117130146184789586870752920468112.50%10190.00%1900177650.68%869175149.63%699136951.06%173797016877481454733
18Rampage20200000614-81010000026-41010000048-400.000611170090117130146684789586870631718418225.00%9633.33%0900177650.68%869175149.63%699136951.06%173797016877481454733
19Reign312000001316-31010000067-12110000079-220.33313213400901171301498847895868709832267513323.08%13469.23%0900177650.68%869175149.63%699136951.06%173797016877481454733
20Rocket623001001920-131200000119231100100811-350.41719294810901171301420284789586870189604611731412.90%23578.26%0900177650.68%869175149.63%699136951.06%173797016877481454733
21Senators32000010191272200000012661000001076161.00019345300901171301493847895868709231226610550.00%11281.82%0900177650.68%869175149.63%699136951.06%173797016877481454733
22Sound Tigers220000001468110000009271100000054141.00014233700901171301481847895868705612143313430.77%7185.71%0900177650.68%869175149.63%699136951.06%173797016877481454733
23Thunderbirds210000101486110000008351000001065141.0001422360090117130147784789586870732212431119.09%6183.33%2900177650.68%869175149.63%699136951.06%173797016877481454733
24Wolfpack2110000067-11010000024-21100000043120.50061016009011713014658478958687062271854500.00%9277.78%0900177650.68%869175149.63%699136951.06%173797016877481454733
25Wolves31100001171611010000067-121000001119230.500172643009011713014101847895868709528226114214.29%11463.64%1900177650.68%869175149.63%699136951.06%173797016877481454733
Total803229023311342352-10401814012141831701340141501127159182-23880.550342561903309011713014263184789586870267787863617963327622.89%3128273.72%10900177650.68%869175149.63%699136951.06%173797016877481454733
_Since Last GM Reset803229023311342352-10401814012141831701340141501127159182-23880.550342561903309011713014263184789586870267787863617963327622.89%3128273.72%10900177650.68%869175149.63%699136951.06%173797016877481454733
_Vs Conference50211901225212218-6251290111111310310259100011499115-16550.550212347559209011713014161184789586870171955642811232094822.97%2075374.40%5900177650.68%869175149.63%699136951.06%173797016877481454733
_Vs Division24109011039398-5125501001454411254001024854-6260.54293150243109011713014783847895868707892732225331212319.01%1042873.08%4900177650.68%869175149.63%699136951.06%173797016877481454733

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8088L234256190326312677878636179630
All Games
GPWLOTWOTL SOWSOLGFGA
80322923311342352
Home Games
GPWLOTWOTL SOWSOLGFGA
4018141214183170
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4014151127159182
Last 10 Games
WLOTWOTL SOWSOL
440002
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3327622.89%3128273.72%10
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
847895868709011713014
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
900177650.68%869175149.63%699136951.06%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
173797016877481454733


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-11-301Moose3Rocket4ALXR1BoxScore
3 - 2021-12-0212Moose5Condors3AWR1BoxScore
5 - 2021-12-0420Moose6Barracuda7ALXXBoxScore
7 - 2021-12-0626Rocket4Moose2BLR1BoxScore
10 - 2021-12-0948Admirals6Moose3BLBoxScore
14 - 2021-12-1368Barracuda5Moose3BLR1BoxScore
17 - 2021-12-1683Moose5Griffins3AWR1BoxScore
20 - 2021-12-1995Condors4Moose5BWBoxScore
21 - 2021-12-20104Moose6Marlies3AWBoxScore
25 - 2021-12-24120Griffins2Moose4BWR1BoxScore
27 - 2021-12-26131Moose2Condors4ALBoxScore
29 - 2021-12-28143Moose3Rocket2AWR1BoxScore
30 - 2021-12-29152Little Stars5Moose2BLBoxScore
32 - 2021-12-31162Moose2Griffins5ALR1BoxScore
34 - 2022-01-02173Moose2Phantoms4ALBoxScore
36 - 2022-01-04181Barracuda4Moose6BWR1BoxScore
38 - 2022-01-06192Moose8Barracuda9ALXXBoxScore
40 - 2022-01-08205Moose4Heat2AWBoxScore
41 - 2022-01-09212Admirals4Moose5BWXXBoxScore
44 - 2022-01-12232Crunch3Moose5BWBoxScore
46 - 2022-01-14243Moose3Monsters4ALXXBoxScore
48 - 2022-01-16254Moose4Wolfpack3AWBoxScore
49 - 2022-01-17260Thunderbirds3Moose8BWBoxScore
53 - 2022-01-21279Moose6Thunderbirds5AWXXBoxScore
54 - 2022-01-22286Sound Tigers2Moose9BWBoxScore
58 - 2022-01-26304Moose3Heat5ALBoxScore
60 - 2022-01-28312Senators3Moose8BWBoxScore
62 - 2022-01-30330Moose3Reign6ALBoxScore
63 - 2022-01-31337Penguins6Moose3BLBoxScore
66 - 2022-02-03348Moose5Crunch6ALXXBoxScore
68 - 2022-02-05362Barracuda5Moose4BLXXR1BoxScore
70 - 2022-02-07371Moose2Rocket5ALBoxScore
72 - 2022-02-09383Moose5Sound Tigers4AWBoxScore
73 - 2022-02-10390Monsters4Moose6BWBoxScore
78 - 2022-02-15414Devils1Moose3BWBoxScore
82 - 2022-02-19434Moose3Punishers5ALBoxScore
84 - 2022-02-21441Wolves7Moose6BLBoxScore
87 - 2022-02-24457Moose5Wolves6ALXXBoxScore
89 - 2022-02-26466Admirals9Moose4BLBoxScore
91 - 2022-02-28476Moose4Admirals8ALBoxScore
93 - 2022-03-02492Condors3Moose5BWR1BoxScore
99 - 2022-03-08517Moose4Penguins2AWBoxScore
100 - 2022-03-09521Reign7Moose6BLBoxScore
103 - 2022-03-12534Moose4Devils7ALBoxScore
105 - 2022-03-14545Marlies6Moose4BLBoxScore
107 - 2022-03-16560Moose3Icehogs2AWBoxScore
110 - 2022-03-19570Comets6Moose5BLXXBoxScore
112 - 2022-03-21582Moose5Icehogs6ALBoxScore
114 - 2022-03-23590Moose4Bears3AWBoxScore
115 - 2022-03-24596Eagles4Moose3BLXXBoxScore
118 - 2022-03-27610Moose6Wolves3AWBoxScore
121 - 2022-03-30624Rocket4Moose2BLR1BoxScore
125 - 2022-04-03644Moose4Griffins3AWR1BoxScore
126 - 2022-04-04650Bears4Moose6BWBoxScore
129 - 2022-04-07672Moose2Little Stars4ALBoxScore
130 - 2022-04-08676Condors3Moose1BLR1BoxScore
132 - 2022-04-10694Moose2Phantoms6ALBoxScore
133 - 2022-04-11699Moose7Senators6AWXXBoxScore
134 - 2022-04-12702Icehogs6Moose5BLXBoxScore
138 - 2022-04-16726Moose4Rampage8ALBoxScore
139 - 2022-04-17728Phantoms4Moose6BWBoxScore
143 - 2022-04-21753Rocket1Moose7BWR1BoxScore
146 - 2022-04-24767Moose4Reign3AWBoxScore
148 - 2022-04-26780Griffins5Moose1BLR1BoxScore
150 - 2022-04-28794Moose5Marlies6ALXXBoxScore
153 - 2022-05-01806Griffins4Moose5BWXR1BoxScore
155 - 2022-05-03818Moose5Comets4AWXBoxScore
157 - 2022-05-05832Monsters5Moose8BWBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
162 - 2022-05-10857Senators3Moose4BWBoxScore
166 - 2022-05-14881Punishers4Moose3BLXBoxScore
168 - 2022-05-16889Moose1Eagles4ALBoxScore
172 - 2022-05-20908Heat1Moose6BWBoxScore
174 - 2022-05-22916Moose6Barracuda4AWR1BoxScore
177 - 2022-05-25934Little Stars5Moose7BWBoxScore
181 - 2022-05-29954Little Stars7Moose6BLXXBoxScore
183 - 2022-05-31963Moose2Condors5ALR1BoxScore
184 - 2022-06-01969Moose2Eagles3ALXXBoxScore
188 - 2022-06-05986Heat1Moose3BWBoxScore
193 - 2022-06-101014Wolfpack4Moose2BLBoxScore
198 - 2022-06-151034Rampage6Moose2BLBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance74,55237,077
Attendance PCT93.19%92.69%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2791 - 93.02% 83,094$3,323,752$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,902,679$ 1,969,000$ 1,540,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,845$ 1,931,429$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 14,595$ 0$




Moose Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Moose Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Moose Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Moose Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Moose Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA