Connexion

Monsters
GP: 80 | W: 41 | L: 32 | OTL: 7 | P: 89
GF: 320 | GA: 328 | PP%: 22.60% | PK%: 79.94%
DG: Francois Juteau | Morale : 42 | Moyenne d’équipe : 64
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Monsters
41-32-7, 89pts
3
FINAL
2 Wolves
49-21-10, 108pts
Team Stats
OTL1StreakL1
23-13-4Home Record27-9-4
18-19-3Away Record22-12-6
4-4-2Last 10 Games6-2-2
4.00Buts par match 4.45
4.10Buts contre par match 3.66
22.60%Pourcentage en avantage numérique22.05%
79.94%Pourcentage en désavantage numérique79.93%
Admirals
34-39-7, 75pts
5
FINAL
4 Monsters
41-32-7, 89pts
Team Stats
OTW1StreakOTL1
17-20-3Home Record23-13-4
17-19-4Away Record18-19-3
3-6-1Last 10 Games4-4-2
4.05Buts par match 4.00
4.65Buts contre par match 4.10
19.75%Pourcentage en avantage numérique22.60%
78.26%Pourcentage en désavantage numérique79.94%
Meneurs d'équipe
Buts
Matt Calvert
54
Passes
Christian Hanson
74
Points
Christian Hanson
103
Plus/Moins
Ondrej Kase
11
Victoires
Eric Comrie
27
Pourcentage d’arrêts
Eric Comrie
0.893

Statistiques d’équipe
Buts pour
320
4.00 GFG
Tirs pour
2616
32.70 Avg
Pourcentage en avantage numérique
22.6%
73 GF
Début de zone offensive
37.0%
Buts contre
328
4.10 GAA
Tirs contre
2713
33.91 Avg
Pourcentage en désavantage numérique
79.9%
65 GA
Début de la zone défensive
35.3%
Informations de l'équipe

Directeur généralFrancois Juteau
EntraîneurTony Twist
DivisionJohn-Ahearne
ConférenceRobert-Lebel
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,814
Billets de saison300


Informations de la formation

Équipe Pro26
Équipe Mineure23
Limite contact 49 / 250
Espoirs0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Zac DalpeX100.007435777568777776757766687867613324710272950,000$
2Matt CalvertX100.006825767473817371656579627366593548700271950,000$
3Christian HansonX100.006733796779696863757771606975621964690301900,000$
4Ondrej Kase (R)X100.007348837169687368697670667347436062690203800,000$
5Mitch Marner (R)X100.006536826858777472888871496442428462680191500,000$
6Bobby FarnhamX100.007669676678638065656765636869683062670271600,000$
7Jared Knight (R)X100.006621726371727467707271636649473745660242700,000$
8Austin Watson (R)X100.007228786569697167686368606548483762650241600,000$
9Joakim Nordstrom (R)X100.008145636570647568596767585647484062640242500,000$
10Ryan Fitzgerald (R)X100.006543776368676672726067606545474952640221550,000$
11Richard Nejezchleb (R)X100.005446706265676261656372545746454054620221500,000$
12Marc Michaelis (R)X100.006939696559695863636663645746466225620212500,000$
13Maxim Mamin (R)X100.005834746956656865666164566144445449610211500,000$
14Patrik Laine (R)X100.005928737170716668545476387040409362610182500,000$
15Francis Perron (R)X100.005635675742546766697465365842425647580201525,000$
16Cameron Hughes (R)X100.005127645063585755565148424843435927510201500,000$
17Morgan Rielly (R)X100.007232896868767770547871676455465762700223995,000$
18Aaron Ness (R)X100.006938737269757371497471696157513265690261600,000$
19Dillon Heatherington (R)X100.006724846466697359456351805345445062660211500,000$
20Matt Grzelcyk (R)X100.006426697858636871437249675446464858640222700,000$
21Victor Mete (R)X100.004536707455566872357157594440408042590182500,000$
22Tarmo Reunanen (R)X100.005341675860465653276047604940406462560182500,000$
Rayé
1Nathan Noel (R)X100.006237714876726453647368486145475027600212500,000$
MOYENNE D’ÉQUIPE100.00653674666667696661686559615048515264
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Eric Comrie100.00698169737373707477735748445545710212700,000$
2Phoenix Copley100.00706065737262526773626854533260650241500,000$
Rayé
1Peyton Jones (R)100.00546359525856625055605440406817560202500,000$
MOYENNE D’ÉQUIPE100.0064686466686461646865604746524164
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Tony Twist76566970335663USA524550,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Christian HansonMonsters (Clb)C80297410353401541692628113511.07%39171221.40630364625802271963052.14%21544241001.2028000172
2Ondrej KaseMonsters (Clb)RW80376299113201411072928818312.67%39161520.201223356025420291325244.44%1446052101.2325000678
3Matt CalvertMonsters (Clb)LW6954439710440116902866913518.88%44147821.4315153043221213102254451.01%3475125031.31490001142
4Mitch MarnerMonsters (Clb)RW80353974-15300113912419815214.52%36138617.3313821322210112556364.10%785520021.0715000443
5Aaron NessMonsters (Clb)D80962712123514617416259845.56%103220927.6231518222911348263000.00%06179100.6400100222
6Morgan RiellyMonsters (Clb)D8012506241009815316462797.32%142225528.1971320332900335306110.00%04575200.5500000332
7Austin WatsonMonsters (Clb)LW80261945-1322010177123387221.14%21114714.344610161750111894241.67%481323000.7801000114
8Bobby FarnhamMonsters (Clb)RW8011263714009475136411018.09%2291711.47112181012103057.14%352716000.8103000230
9Jared KnightMonsters (Clb)C72122133-838011411012640669.52%28104214.4712391380000514249.84%6262217000.6301000110
10Joakim NordstromMonsters (Clb)LW80191332-252012273152457112.50%1595011.880001150000551153.19%472215000.6700000021
11Ryan FitzgeraldMonsters (Clb)C8016143071008575100287116.00%1788911.120223400000481153.38%5471519000.6700000101
12Dillon HeatheringtonMonsters (Clb)D8082028-5406112674422910.81%84163620.45628121770001216020.00%01050000.3400000102
13Matt GrzelcykMonsters (Clb)D8012526-7895981078535341.18%72160320.0503371870002182010.00%02752000.3200000001
14Zac DalpeMonsters (Clb)C23514194255242334153214.71%52028.791788390000312050.99%30255001.8801001112
15Maxim MaminMonsters (Clb)C7081018-20120363853184315.09%115487.84000050000171146.60%1911310000.6600000010
16Patrik LaineMonsters (Clb)LW8012618-4280603583245814.46%147439.303037690002120145.07%71179010.4813000113
17Richard NejezchlebMonsters (Clb)RW767714-18461055397327389.59%196919.1000001000000135.71%142214000.4000001100
18Tarmo ReunanenMonsters (Clb)D8001414-1342034552513130.00%65101612.7100004000161000.00%0228000.2800000000
19Marc MichaelisMonsters (Clb)LW51448-62036104410209.09%112955.7900000000000040.00%1064000.5400000001
20Victor MeteMonsters (Clb)D55167-518010482517154.00%3666712.140001800005000.00%0815000.2101000000
21Francis PerronMonsters (Clb)LW69404-1001021551426.67%11632.37101161011360027.78%1810000.4900000100
22Nathan NoelMonsters (Clb)C52011-6201358660.00%11553.0000003000010046.81%4704000.1300000000
23Cameron HughesMonsters (Clb)C52000100210000.00%0621.21000000000370066.67%900000.0000000000
Statistiques d’équipe totales ou en moyenne1629310530840-7870325172316832563861145112.10%8252339414.3673127200302242271118512040352251.19%4688524573460.721037102373734
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Eric ComrieMonsters (Clb)49271350.8933.602684201611509784310.750204516530
2Phoenix CopleyMonsters (Clb)41141620.8684.352043001481124599110.588173543120
3Peyton JonesMonsters (Clb)40300.8466.0511900127847100.0000021000
Statistiques d’équipe totales ou en moyenne94413270.8823.9748462032127111430520.676378080650


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Aaron NessMonsters (Clb)D261990-01-01Yes182 Lbs5 ft10NoNoNo1Pro & Farm600,000$0$0$No
Austin WatsonMonsters (Clb)LW241992-01-01Yes193 Lbs6 ft4NoNoNo1Pro & Farm600,000$0$0$No
Bobby FarnhamMonsters (Clb)RW271989-01-01No188 Lbs5 ft10NoNoNo1Pro & Farm600,000$0$0$No
Cameron HughesMonsters (Clb)C201996-01-01Yes195 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Christian HansonMonsters (Clb)C301986-01-01No202 Lbs6 ft3NoNoNo1Pro & Farm900,000$0$0$No
Dillon HeatheringtonMonsters (Clb)D211995-01-01Yes185 Lbs6 ft4NoNoNo1Pro & Farm500,000$0$0$No
Eric ComrieMonsters (Clb)G211995-01-01No185 Lbs6 ft1NoNoNo2Pro & Farm700,000$0$0$No800,000$
Francis PerronMonsters (Clb)LW201996-01-01Yes178 Lbs6 ft2NoNoNo1Pro & Farm525,000$0$0$No
Jared KnightMonsters (Clb)C241992-01-01Yes203 Lbs5 ft11NoNoNo2Pro & Farm700,000$0$0$No700,000$
Joakim NordstromMonsters (Clb)LW241992-01-01Yes189 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No600,000$
Marc MichaelisMonsters (Clb)LW211995-01-01Yes187 Lbs5 ft11NoNoNo2Pro & Farm500,000$0$0$No500,000$
Matt CalvertMonsters (Clb)LW271989-01-01No187 Lbs5 ft10NoNoNo1Pro & Farm950,000$0$0$No
Matt GrzelcykMonsters (Clb)D221994-01-01Yes171 Lbs5 ft9NoNoNo2Pro & Farm700,000$0$0$No800,000$
Maxim MaminMonsters (Clb)C211995-01-01Yes185 Lbs6 ft1NoNoNo1Pro & Farm500,000$0$0$No
Mitch MarnerMonsters (Clb)RW191997-01-01Yes175 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$No
Morgan RiellyMonsters (Clb)D221994-01-01Yes200 Lbs6 ft0NoNoNo3Pro & Farm995,000$0$0$No1,300,000$1,800,000$
Nathan NoelMonsters (Clb)C211995-01-01Yes209 Lbs6 ft2NoNoNo2Pro & Farm500,000$0$0$No500,000$
Ondrej KaseMonsters (Clb)RW201996-01-01Yes186 Lbs5 ft11NoNoNo3Pro & Farm800,000$0$0$No995,000$1,300,000$
Patrik LaineMonsters (Clb)LW181998-01-01Yes205 Lbs6 ft4NoNoNo2Pro & Farm500,000$0$0$No500,000$
Peyton JonesMonsters (Clb)G201996-01-01Yes209 Lbs6 ft4NoNoNo2Pro & Farm500,000$0$0$No500,000$
Phoenix CopleyMonsters (Clb)G241992-01-01No196 Lbs6 ft4NoNoNo1Pro & Farm500,000$0$0$No
Richard NejezchlebMonsters (Clb)RW221994-01-01Yes187 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Ryan FitzgeraldMonsters (Clb)C221994-01-01Yes185 Lbs5 ft10NoNoNo1Pro & Farm550,000$0$0$No
Tarmo ReunanenMonsters (Clb)D181998-01-01Yes179 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$
Victor MeteMonsters (Clb)D181998-01-01Yes183 Lbs5 ft9NoNoNo2Pro & Farm500,000$0$0$No500,000$
Zac DalpeMonsters (Clb)C271989-01-01No195 Lbs6 ft1NoNoNo2Pro & Farm950,000$0$0$No950,000$
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2622.27190 Lbs6 ft01.58618,077$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Patrik LaineChristian HansonMitch Marner40122
2Matt CalvertJared KnightOndrej Kase30122
3Joakim NordstromRyan FitzgeraldBobby Farnham20122
4Austin WatsonMaxim MaminRichard Nejezchleb10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Morgan RiellyAaron Ness40122
2Dillon HeatheringtonMatt Grzelcyk30122
3Victor MeteTarmo Reunanen20122
4Morgan RiellyAaron Ness10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Matt CalvertChristian HansonMitch Marner60122
2Patrik LaineJared KnightOndrej Kase40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Morgan RiellyAaron Ness60122
2Dillon HeatheringtonMatt Grzelcyk40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Ryan FitzgeraldMatt Calvert60122
2Christian HansonOndrej Kase40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Morgan RiellyAaron Ness60122
2Dillon HeatheringtonMatt Grzelcyk40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Christian Hanson60122Morgan RiellyAaron Ness60122
2Matt Calvert40122Dillon HeatheringtonMatt Grzelcyk40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Christian HansonMitch Marner60122
2Jared KnightOndrej Kase40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Morgan RiellyAaron Ness60122
2Dillon HeatheringtonMatt Grzelcyk40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Matt CalvertChristian HansonOndrej KaseMorgan RiellyAaron Ness
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Matt CalvertJared KnightOndrej KaseMorgan RiellyAaron Ness
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Mitch Marner, Matt Calvert, Ondrej KaseMaxim Mamin, Jared KnightJared Knight
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Victor Mete, Tarmo Reunanen, Dillon HeatheringtonVictor MeteTarmo Reunanen, Dillon Heatherington
Tirs de pénalité
Mitch Marner, Matt Calvert, Christian Hanson, Ondrej Kase, Patrik Laine
Gardien
#1 : Eric Comrie, #2 : Phoenix Copley


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals632001002123-230200100612-6330000001511470.5832139601089114112121668268749015219163851423239.38%36877.78%1922181650.77%905173452.19%697136051.25%167291317137651463717
2Barracuda320000011064220000008351000000123-150.833101727008911411212106826874901529132225712325.00%11281.82%1922181650.77%905173452.19%697136051.25%167291317137651463717
3Bears220000001284110000006421100000064241.0001219310089114112127082687490152712810373133.33%5180.00%1922181650.77%905173452.19%697136051.25%167291317137651463717
4Comets2020000047-31010000023-11010000024-200.0004610008911411212818268749015281202431200.00%12375.00%0922181650.77%905173452.19%697136051.25%167291317137651463717
5Condors303000001123-1220200000818-101010000035-200.000111627008911411212110826874901529938245911218.18%12466.67%0922181650.77%905173452.19%697136051.25%167291317137651463717
6Crunch20100010910-1100000106511010000035-220.500915241089114112127382687490152702025429333.33%7271.43%1922181650.77%905173452.19%697136051.25%167291317137651463717
7Devils22000000633110000002111100000042241.000610160089114112127182687490152692710388225.00%50100.00%0922181650.77%905173452.19%697136051.25%167291317137651463717
8Eagles20200000410-61010000034-11010000016-500.00047110089114112125682687490152632110431000.00%50100.00%0922181650.77%905173452.19%697136051.25%167291317137651463717
9Griffins321000009902110000068-21100000031240.667915240089114112129882687490152923322699111.11%12283.33%0922181650.77%905173452.19%697136051.25%167291317137651463717
10Heat513000101719-22110000088030200010911-240.40017274400891141121216582687490152181583210316318.75%16662.50%0922181650.77%905173452.19%697136051.25%167291317137651463717
11Icehogs63201000191453200100011563120000089-180.66719345300891141121217982687490152211467814129724.14%39489.74%2922181650.77%905173452.19%697136051.25%167291317137651463717
12Little Stars21100000111011010000057-21100000063320.5001118290089114112126182687490152631714498112.50%7185.71%0922181650.77%905173452.19%697136051.25%167291317137651463717
13Marlies311000011214-21000000145-12110000089-130.5001222340089114112121108268749015211127227418527.78%11372.73%0922181650.77%905173452.19%697136051.25%167291317137651463717
14Moose302000101317-41000001043120200000914-520.333132033008911411212106826874901529834185217211.76%9188.89%0922181650.77%905173452.19%697136051.25%167291317137651463717
15Penguins421000012121011000000642311000011517-250.6252137580089114112121198268749015213635308716531.25%15380.00%0922181650.77%905173452.19%697136051.25%167291317137651463717
16Phantoms312000001116-521100000101001010000016-520.333111930008911411212868268749015211534406815320.00%10280.00%0922181650.77%905173452.19%697136051.25%167291317137651463717
17Punishers53200000171613300000015962020000027-560.60017284500891141121215482687490152148572413120630.00%12191.67%1922181650.77%905173452.19%697136051.25%167291317137651463717
18Rampage220000001284110000005231100000076141.00012243600891141121279826874901526511143711436.36%7271.43%0922181650.77%905173452.19%697136051.25%167291317137651463717
19Reign312000001017-721100000811-31010000026-420.3331017270089114112129682687490152954526528112.50%12375.00%0922181650.77%905173452.19%697136051.25%167291317137651463717
20Rocket4220000014122211000008622110000066040.5001421350089114112121278268749015213733489514535.71%24387.50%0922181650.77%905173452.19%697136051.25%167291317137651463717
21Senators64100001292453200000115114321000001413190.75029507900891141121219782687490152185666914916318.75%27870.37%1922181650.77%905173452.19%697136051.25%167291317137651463717
22Sound Tigers211000001213-1110000008621010000047-320.50012213300891141121271826874901527819145011218.18%7528.57%0922181650.77%905173452.19%697136051.25%167291317137651463717
23Thunderbirds3200000115961000000134-122000000125750.8331523380089114112121018268749015211236145815533.33%70100.00%0922181650.77%905173452.19%697136051.25%167291317137651463717
24Wolfpack201001001114-31010000057-21000010067-110.2501117280089114112126682687490152741910398562.50%50100.00%0922181650.77%905173452.19%697136051.25%167291317137651463717
25Wolves210000101055110000007341000001032141.0001015250089114112126882687490152771322415120.00%11190.91%0922181650.77%905173452.19%697136051.25%167291317137651463717
Total80363201245320328-8402013011231691591040161900122151169-18890.556320537857208911411212261682687490152271383270717443237322.60%3246579.94%8922181650.77%905173452.19%697136051.25%167291317137651463717
_Since Last GM Reset80363201245320328-8402013011231691591040161900122151169-18890.556320537857208911411212261682687490152271383270717443237322.60%3246579.94%8922181650.77%905173452.19%697136051.25%167291317137651463717
_Vs Conference48202101123176194-18251190111296100-423912000118094-14500.521176297473108911411212154682687490152160650948610611973819.29%2194679.00%5922181650.77%905173452.19%697136051.25%167291317137651463717
_Vs Division18105011016961894201101322849630000037334240.6676912319210891141121254282687490152587175232432771316.88%1022080.39%4922181650.77%905173452.19%697136051.25%167291317137651463717

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8089OTL132053785726162713832707174420
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8036321245320328
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4020131123169159
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4016190122151169
Derniers 10 matchs
WLOTWOTL SOWSOL
340111
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
3237322.60%3246579.94%8
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
826874901528911411212
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
922181650.77%905173452.19%697136051.25%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
167291317137651463717


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
4 - 2021-12-0315Icehogs2Monsters5BWSommaire du match
6 - 2021-12-0524Monsters4Icehogs3AWSommaire du match
7 - 2021-12-0629Monsters4Admirals3AWSommaire du match
10 - 2021-12-0946Senators5Monsters4BLXXSommaire du match
13 - 2021-12-1263Rocket2Monsters5BWSommaire du match
15 - 2021-12-1470Monsters6Penguins5AWSommaire du match
16 - 2021-12-1580Monsters5Senators1AWSommaire du match
19 - 2021-12-1890Monsters3Penguins5ALSommaire du match
21 - 2021-12-2098Admirals3Monsters1BLSommaire du match
24 - 2021-12-23118Senators3Monsters6BWSommaire du match
25 - 2021-12-24122Monsters3Heat2AWXXSommaire du match
29 - 2021-12-28145Punishers4Monsters6BWSommaire du match
33 - 2022-01-01167Monsters4Rocket5ALSommaire du match
35 - 2022-01-03174Punishers3Monsters5BWSommaire du match
37 - 2022-01-05190Phantoms7Monsters4BLSommaire du match
40 - 2022-01-08209Monsters4Sound Tigers7ALSommaire du match
41 - 2022-01-09217Monsters3Crunch5ALSommaire du match
43 - 2022-01-11227Eagles4Monsters3BLSommaire du match
46 - 2022-01-14243Moose3Monsters4BWXXSommaire du match
47 - 2022-01-15253Monsters1Punishers4ALSommaire du match
50 - 2022-01-18264Monsters1Eagles6ALSommaire du match
53 - 2022-01-21278Little Stars7Monsters5BLSommaire du match
56 - 2022-01-24297Wolfpack7Monsters5BLSommaire du match
59 - 2022-01-27310Monsters2Marlies6ALSommaire du match
61 - 2022-01-29323Marlies5Monsters4BLXXSommaire du match
63 - 2022-01-31335Monsters6Marlies3AWSommaire du match
66 - 2022-02-03351Barracuda2Monsters5BWSommaire du match
69 - 2022-02-06365Monsters3Condors5ALSommaire du match
71 - 2022-02-08377Reign8Monsters3BLSommaire du match
73 - 2022-02-10390Monsters4Moose6ALSommaire du match
76 - 2022-02-13402Monsters2Icehogs3ALSommaire du match
77 - 2022-02-14409Wolves3Monsters7BWSommaire du match
81 - 2022-02-18428Punishers2Monsters4BWSommaire du match
85 - 2022-02-22446Monsters2Rocket1AWSommaire du match
86 - 2022-02-23454Thunderbirds4Monsters3BLXXSommaire du match
90 - 2022-02-27475Reign3Monsters5BWSommaire du match
94 - 2022-03-03498Griffins7Monsters3BLSommaire du match
96 - 2022-03-05505Monsters4Devils2AWSommaire du match
98 - 2022-03-07515Monsters2Icehogs3ALSommaire du match
100 - 2022-03-09526Bears4Monsters6BWSommaire du match
106 - 2022-03-15551Griffins1Monsters3BWSommaire du match
111 - 2022-03-20575Senators3Monsters5BWSommaire du match
116 - 2022-03-25601Rampage2Monsters5BWSommaire du match
118 - 2022-03-27607Monsters6Thunderbirds3AWSommaire du match
121 - 2022-03-30623Monsters4Senators8ALSommaire du match
122 - 2022-03-31629Penguins4Monsters6BWSommaire du match
125 - 2022-04-03647Monsters1Phantoms6ALSommaire du match
126 - 2022-04-04654Devils1Monsters2BWSommaire du match
129 - 2022-04-07673Monsters6Penguins7ALXXSommaire du match
130 - 2022-04-08679Crunch5Monsters6BWXXSommaire du match
132 - 2022-04-10692Monsters6Bears4AWSommaire du match
134 - 2022-04-12704Monsters2Comets4ALSommaire du match
135 - 2022-04-13708Heat5Monsters3BLSommaire du match
140 - 2022-04-18732Comets3Monsters2BLSommaire du match
142 - 2022-04-20747Monsters7Rampage6AWSommaire du match
144 - 2022-04-22758Phantoms3Monsters6BWSommaire du match
146 - 2022-04-24765Monsters3Griffins1AWSommaire du match
148 - 2022-04-26779Monsters6Wolfpack7ALXSommaire du match
149 - 2022-04-27785Icehogs1Monsters3BWSommaire du match
154 - 2022-05-02810Rocket4Monsters3BLSommaire du match
156 - 2022-05-04823Monsters6Little Stars3AWSommaire du match
157 - 2022-05-05832Monsters5Moose8ALSommaire du match
158 - 2022-05-06837Icehogs2Monsters3BWXSommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
162 - 2022-05-10860Heat3Monsters5BWSommaire du match
163 - 2022-05-11866Monsters1Punishers3ALSommaire du match
165 - 2022-05-13874Monsters2Heat4ALSommaire du match
167 - 2022-05-15887Monsters4Admirals3AWSommaire du match
168 - 2022-05-16891Sound Tigers6Monsters8BWSommaire du match
173 - 2022-05-21912Monsters5Senators4AWSommaire du match
174 - 2022-05-22918Admirals4Monsters1BLSommaire du match
176 - 2022-05-24928Monsters4Heat5ALSommaire du match
178 - 2022-05-26938Monsters6Thunderbirds2AWSommaire du match
179 - 2022-05-27942Monsters7Admirals5AWSommaire du match
181 - 2022-05-29953Barracuda1Monsters3BWSommaire du match
183 - 2022-05-31966Monsters2Barracuda3ALXXSommaire du match
186 - 2022-06-03981Condors9Monsters2BLSommaire du match
187 - 2022-06-04984Monsters2Reign6ALSommaire du match
191 - 2022-06-081002Condors9Monsters6BLSommaire du match
192 - 2022-06-091007Monsters3Wolves2AWXXSommaire du match
198 - 2022-06-151033Admirals5Monsters4BLXSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance75,38337,189
Assistance PCT94.23%92.97%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2814 - 93.81% 83,901$3,356,052$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
2,095,985$ 1,607,000$ 1,125,000$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
8,035$ 1,535,735$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 10,785$ 0$




Monsters Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA