Connexion

Marlies
GP: 80 | W: 43 | L: 28 | OTL: 9 | P: 95
GF: 335 | GA: 316 | PP%: 22.30% | PK%: 79.21%
DG: Pascal Landry | Morale : 46 | Moyenne d’équipe : 63
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Eagles
45-27-8, 98pts
5
FINAL
2 Marlies
43-28-9, 95pts
Team Stats
SOW1StreakW1
27-12-1Home Record20-16-4
18-15-7Away Record23-12-5
7-3-0Last 10 Games4-5-1
4.15Buts par match 4.19
3.91Buts contre par match 3.95
23.84%Pourcentage en avantage numérique22.30%
79.19%Pourcentage en désavantage numérique79.21%
Wolves
49-21-10, 108pts
5
FINAL
6 Marlies
43-28-9, 95pts
Team Stats
L1StreakW1
27-9-4Home Record20-16-4
22-12-6Away Record23-12-5
6-2-2Last 10 Games4-5-1
4.45Buts par match 4.19
3.66Buts contre par match 3.95
22.05%Pourcentage en avantage numérique22.30%
79.93%Pourcentage en désavantage numérique79.21%
Meneurs d'équipe
Buts
Nick Ritchie
67
Passes
Nick Ritchie
61
Points
Nick Ritchie
128
Plus/Moins
Tyler Bertuzzi
25
Victoires
Malcolm Subban
28
Pourcentage d’arrêts
Malcolm Subban
0.884

Statistiques d’équipe
Buts pour
335
4.19 GFG
Tirs pour
2625
32.81 Avg
Pourcentage en avantage numérique
22.3%
60 GF
Début de zone offensive
34.9%
Buts contre
316
3.95 GAA
Tirs contre
2589
32.36 Avg
Pourcentage en désavantage numérique
79.2%
74 GA
Début de la zone défensive
38.4%
Informations de l'équipe

Directeur généralPascal Landry
EntraîneurPeter DeBoer
DivisionFritz-Kraatz
ConférenceRobert-Lebel
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,798
Billets de saison300


Informations de la formation

Équipe Pro30
Équipe Mineure19
Limite contact 49 / 250
Espoirs0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Linden Vey (R)X100.007233747669757775777577636957523766710251995,000$
2Nick Ritchie (R)X100.007740727682638576647577635952466652710202950,000$
3Tyler Bertuzzi (R)X100.007735756979638573667373706451455648700212850,000$
4Colton Sissons (R)X100.007751707472697074766966667351464139690232800,000$
5Pavel Zacha (R)X100.006727826478686872697485556744427638690191500,000$
6Nicholas Baptiste (R)X100.007340727674567274597273636244445566680213700,000$
7Johan Larsson (R)X100.006337757362716668757571506146463966660241600,000$
8Aleksi Saarela (R)X100.005825717955605072596569517342427666630191500,000$
9Logan Brown (R)X100.007448636875547864556665525340408349620182500,000$
10Mathieu Olivier (R)X100.007343676678486659566362565342437066600192500,000$
11Tyler Benson (R)X100.007343626475517363496366564740408266600182500,000$
12Tobias Lindberg (R)X100.006641666857576458666061516243434321590211300,000$
13Haydn Fleury (R)X100.007135887275617565397258865650436031720202950,000$
14Tim Erixon (R)X100.007440847071787174617166756563493647720251950,000$
15Neal Pionk (R)X100.006533887859647385438168755149466156710211500,000$
16Brett Pesce (R)X100.006330788269677575428362715251464754700221650,000$
17Jeff Corbett (R)X100.006735815851736662427173655746464632650221600,000$
18Lucas Carlsson (R)X100.006938816266625956335543684042417537620192500,000$
Rayé
1Henri Ikonen (R)X100.006943626460467165566564574343434320600211500,000$
2Jakob Forsbacka-Karlsson (R)X100.006436626653565152584967505143435619560204400,000$
3Zack MacEwen (R)X100.006242585868586656505860495143444520560201500,000$
4Otto Koivula (R)X100.005130605267645165635267406440407220560182500,000$
5Jaden Lindo (R)X100.006131605061504959495860475442425520540201250,000$
6Radovan Bondra (R)X100.006422545052415655365952483941415320500191400,000$
7Dennis Gilbert (R)X100.006636696152616045366446693342435031590201500,000$
8Brycen Martin (R)X100.005428596650404867216644633542425619560201300,000$
9Simon Bourque (R)X100.003730515342415653245936564341415820480191400,000$
MOYENNE D’ÉQUIPE100.00663670666559666553666360554644574063
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Malcolm Subban100.00697485696779856968886854494766730231800,000$
2Charlie Lindgren100.00727678576490775855767452475766680231500,000$
Rayé
1Jamie Phillips100.00756780555777725854766147453520640231400,000$
MOYENNE D’ÉQUIPE100.0072728160638278625980685147465168
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Peter DeBoer67717386546362Can554666,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nick RitchieMarlies (TOR)LW7367611281010151489632410919320.68%38159021.7911203153209325101948358.91%1296131231.611100019113
2Nicholas BaptisteMarlies (TOR)RW80395796171080150602637216114.83%30140917.6251520291651016526446.15%1305735021.3623000726
3Tyler BertuzziMarlies (TOR)LW79455095256201301182406214618.75%37162320.551014242721220241534347.13%1574334021.1704000561
4Pavel ZachaMarlies (TOR)C6924557919280112114159447215.09%31133319.338715211671013801248.21%18482122001.1802000534
5Neal PionkMarlies (TOR)D77186078512087146209741038.61%113192625.0191221472240332236110.00%06250000.8100000234
6JT CompherMaple LeafsRW762936659180101742286012912.72%30123016.19639151411125722239.62%536118001.06411000442
7Linden VeyMarlies (TOR)RW80253762-8360119922337313310.73%34125315.677132025150011131491260.34%1746216010.99610000431
8Colton SissonsMarlies (TOR)C7421274836551291241913910610.99%29123816.7357122012813492166054.03%12661731000.7815100424
9Aleksi SaarelaMarlies (TOR)C802522471248012093151478516.56%22121215.154041010710171381145.81%7402224000.7855000161
10Brett PesceMarlies (TOR)D795424702808410610647524.72%85168121.2921113151970005231000.00%04248000.5600000121
11Haydn FleuryMarlies (TOR)D7743236171008613610637443.77%144202326.28167131851123297000.00%02182100.3600000022
12Johan LarssonMarlies (TOR)LW8011182954207167107305710.28%2099112.4000023200031101051.06%472412000.5800000131
13Logan BrownMarlies (TOR)C6718927-2460735678173723.08%1167510.08000020110372142.74%37959000.8000000133
14Tim ErixonMarlies (TOR)D6431922-4120631127831353.85%85143022.3502241230112256000.00%01951000.3101000021
15Tyler BensonMarlies (TOR)LW801010209380934084305411.90%107319.15000011000023042.11%19149000.5501000101
16Mathieu OlivierMarlies (TOR)RW8061218428066326928318.70%186758.4400001000000035.71%14614000.5300000002
17Jeff CorbettMarlies (TOR)D73113142516036684924182.04%57110415.12022062000090000.00%0832000.2500000000
18Lucas CarlssonMarlies (TOR)D68113141110038672714103.70%6691513.46000131000020000.00%0331000.3100000000
19Dennis GilbertMarlies (TOR)D4605510280284024670.00%3155412.0500009000015000.00%0212000.1800000000
20Henri IkonenMarlies (TOR)LW941518094144828.57%0707.870000000008100.00%232001.4100000000
21Tobias LindbergMarlies (TOR)RW2012314013312348.33%11065.3400004000000058.33%1211000.5600000000
22Jakob Forsbacka-KarlssonMarlies (TOR)C21011-3601998570.00%31828.7100003000030041.94%6214000.1100000000
23Brycen MartinMarlies (TOR)D10000200043100.00%5808.070000100002000.00%002000.0000000000
24Jaden LindoMarlies (TOR)RW9000000000000.00%000.110000000000000.00%000000.0000000000
25Simon BourqueMarlies (TOR)D2000-100000000.00%084.430000000000000.00%000000.0000000000
26Zack MacEwenMarlies (TOR)C120002401663120.00%0877.2700001000050027.27%3300000.0000000000
27Otto KoivulaMarlies (TOR)LW9000000120000.00%0161.87000000000130012.50%801000.0000000000
Statistiques d’équipe totales ou en moyenne149435758293916975810179216692766858149412.91%9002415616.17681121802822176111324722390371949.12%5073555571380.781952101455237
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Malcolm SubbanMarlies (TOR)59281870.8843.813280012081794884210.634415525323
2Charlie LindgrenMarlies (TOR)32151020.8733.83158401101794329300.50042555001
Statistiques d’équipe totales ou en moyenne91432890.8813.8148640230925881213510.622458080324


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Aleksi SaarelaMarlies (TOR)C191997-01-01Yes200 Lbs5 ft10NoNoNo1Pro & Farm500,000$0$0$No
Brett PesceMarlies (TOR)D221994-01-01Yes185 Lbs6 ft3NoNoNo1Pro & Farm650,000$0$0$No
Brycen MartinMarlies (TOR)D201996-01-01Yes198 Lbs6 ft2NoNoNo1Pro & Farm300,000$0$0$No
Charlie LindgrenMarlies (TOR)G231993-01-01No180 Lbs6 ft1NoNoNo1Pro & Farm500,000$0$0$No
Colton SissonsMarlies (TOR)C231993-01-01Yes187 Lbs6 ft0NoNoNo2Pro & Farm800,000$0$0$No900,000$
Dennis GilbertMarlies (TOR)D201996-01-01Yes216 Lbs6 ft2NoNoNo1Pro & Farm500,000$0$0$No
Haydn FleuryMarlies (TOR)D201996-01-01Yes208 Lbs6 ft3NoNoNo2Pro & Farm950,000$0$0$No1,200,000$
Henri IkonenMarlies (TOR)LW211995-01-01Yes185 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$No
Jaden LindoMarlies (TOR)RW201996-01-01Yes215 Lbs6 ft2NoNoNo1Pro & Farm250,000$0$0$No
Jakob Forsbacka-KarlssonMarlies (TOR)C201996-01-01Yes184 Lbs6 ft1NoNoNo4Pro & Farm400,000$0$0$No450,000$500,000$550,000$
Jamie PhillipsMarlies (TOR)G231993-01-01No180 Lbs6 ft0NoNoNo1Pro & Farm400,000$0$0$No
Jeff CorbettMarlies (TOR)D221994-01-01Yes185 Lbs6 ft1NoNoNo1Pro & Farm600,000$0$0$No
Johan LarssonMarlies (TOR)LW241992-01-01Yes206 Lbs5 ft11NoNoNo1Pro & Farm600,000$0$0$No
Linden VeyMarlies (TOR)RW251991-01-01Yes189 Lbs6 ft0NoNoNo1Pro & Farm995,000$0$0$No
Logan BrownMarlies (TOR)C181998-01-01Yes227 Lbs6 ft6NoNoNo2Pro & Farm500,000$0$0$No500,000$
Lucas CarlssonMarlies (TOR)D191997-01-01Yes190 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$
Malcolm SubbanMarlies (TOR)G231993-01-01No195 Lbs6 ft1NoNoNo1Pro & Farm800,000$0$0$No
Mathieu OlivierMarlies (TOR)RW191997-01-01Yes209 Lbs6 ft2NoNoNo2Pro & Farm500,000$0$0$No500,000$
Neal PionkMarlies (TOR)D211995-01-01Yes186 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$No
Nicholas BaptisteMarlies (TOR)RW211995-01-01Yes185 Lbs6 ft1NoNoNo3Pro & Farm700,000$0$0$No800,000$900,000$
Nick RitchieMarlies (TOR)LW201996-01-01Yes180 Lbs6 ft0NoNoNo2Pro & Farm950,000$0$0$No1,200,000$
Otto KoivulaMarlies (TOR)LW181998-01-01Yes220 Lbs6 ft4NoNoNo2Pro & Farm500,000$0$0$No500,000$
Pavel ZachaMarlies (TOR)C191997-01-01Yes210 Lbs6 ft3NoNoNo1Pro & Farm500,000$0$0$No
Radovan BondraMarlies (TOR)RW191997-01-01Yes217 Lbs6 ft5NoNoNo1Pro & Farm400,000$0$0$No
Simon BourqueMarlies (TOR)D191997-01-01Yes198 Lbs6 ft1NoNoNo1Pro & Farm400,000$0$0$No
Tim ErixonMarlies (TOR)D251991-01-01Yes200 Lbs6 ft2NoNoNo1Pro & Farm950,000$0$0$No
Tobias LindbergMarlies (TOR)RW211995-01-01Yes185 Lbs6 ft3NoNoNo1Pro & Farm300,000$0$0$No
Tyler BensonMarlies (TOR)LW181998-01-01Yes190 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$
Tyler BertuzziMarlies (TOR)LW211995-01-01Yes185 Lbs6 ft0NoNoNo2Pro & Farm850,000$0$0$No950,000$
Zack MacEwenMarlies (TOR)C201996-01-01Yes205 Lbs6 ft3NoNoNo1Pro & Farm500,000$0$0$No
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
3020.77197 Lbs6 ft11.47576,500$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Nick RitchiePavel ZachaNicholas Baptiste40122
2Tyler BertuzziColton SissonsLinden Vey30122
3Johan LarssonAleksi SaarelaMathieu Olivier20122
4Tyler BensonLogan BrownTobias Lindberg10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Haydn FleuryNeal Pionk40122
2Tim ErixonBrett Pesce30122
3Jeff CorbettLucas Carlsson20122
4Haydn FleuryTim Erixon10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Nick RitchiePavel ZachaNicholas Baptiste60122
2Tyler BertuzziColton SissonsLinden Vey40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Neal PionkBrett Pesce60122
2Haydn FleuryJeff Corbett40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Colton SissonsNick Ritchie60122
2Aleksi SaarelaTyler Bertuzzi40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Haydn FleuryTim Erixon60122
2Neal PionkBrett Pesce40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Colton Sissons60122Haydn FleuryTim Erixon60122
2Aleksi Saarela40122Neal PionkBrett Pesce40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Colton SissonsNick Ritchie60122
2Aleksi SaarelaTyler Bertuzzi40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Haydn FleuryNeal Pionk60122
2Tim ErixonBrett Pesce40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Nick RitchieColton SissonsLinden VeyHaydn FleuryTim Erixon
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Nick RitchieColton SissonsLinden VeyHaydn FleuryTim Erixon
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Nicholas Baptiste, Johan Larsson, Aleksi SaarelaNicholas Baptiste, Johan LarssonNicholas Baptiste
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Brett Pesce, Jeff Corbett, Lucas CarlssonBrett PesceBrett Pesce, Jeff Corbett
Tirs de pénalité
Colton Sissons, Linden Vey, Pavel Zacha, Aleksi Saarela, Tyler Bertuzzi
Gardien
#1 : Malcolm Subban, #2 : Charlie Lindgren


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals320000101266210000108531100000041361.00012203200891231161987892898815678734206711218.18%10280.00%0841173748.42%933191148.82%675132450.98%170393617037591459722
2Barracuda411001011619-31010000057-2310001011112-140.5001625410089123116191268928988156712728308616212.50%15380.00%1841173748.42%933191148.82%675132450.98%170393617037591459722
3Bears311000101011-1210000109721010000014-340.667101525008912311619101892898815671093628757114.29%14285.71%0841173748.42%933191148.82%675132450.98%170393617037591459722
4Comets21100000862110000006151010000025-320.500814220089123116196589289881567702610428225.00%4175.00%0841173748.42%933191148.82%675132450.98%170393617037591459722
5Condors30200001814-61010000025-32010000169-310.1678132100891231161994892898815679633267010440.00%13469.23%0841173748.42%933191148.82%675132450.98%170393617037591459722
6Crunch321000001192220000008351010000036-340.667111930018912311619107892898815677935147310440.00%7357.14%0841173748.42%933191148.82%675132450.98%170393617037591459722
7Devils21100000710-31010000037-41100000043120.500712190089123116197189289881567642616397114.29%8275.00%0841173748.42%933191148.82%675132450.98%170393617037591459722
8Eagles20200000711-41010000025-31010000056-100.000713200089123116197289289881567532810487114.29%5180.00%0841173748.42%933191148.82%675132450.98%170393617037591459722
9Griffins312000001420-620200000715-81100000075220.33314223600891231161989892898815671052628648112.50%15566.67%1841173748.42%933191148.82%675132450.98%170393617037591459722
10Heat632000012022-2311000011115-43210000097270.58320395900891231161920789289881567190635414933721.21%28582.14%3841173748.42%933191148.82%675132450.98%170393617037591459722
11Icehogs32100000201281100000084421100000128440.667203454018912311619109892898815678931227317317.65%10280.00%0841173748.42%933191148.82%675132450.98%170393617037591459722
12Little Stars55000000261016220000009453300000017611101.00026406600891231161916289289881567128473613119631.58%19194.74%1841173748.42%933191148.82%675132450.98%170393617037591459722
13Monsters3110001014122211000009811000001054140.6671423370089123116191118928988156711036365711327.27%18572.22%1841173748.42%933191148.82%675132450.98%170393617037591459722
14Moose311000101515020100010911-21100000064240.667152439008912311619119892898815679928288310440.00%14657.14%0841173748.42%933191148.82%675132450.98%170393617037591459722
15Penguins20200000613-71010000037-41010000036-300.00068140089123116196489289881567651624413133.33%12375.00%2841173748.42%933191148.82%675132450.98%170393617037591459722
16Phantoms733000012427-3311000011012-2422000001415-170.50024436700891231161922089289881567246847811820315.00%38294.74%0841173748.42%933191148.82%675132450.98%170393617037591459722
17Punishers211000008801010000035-21100000053220.5008132100891231161960892898815676726124110110.00%6266.67%0841173748.42%933191148.82%675132450.98%170393617037591459722
18Rampage20100010710-31010000015-41000001065120.50079160089123116195689289881567701823348337.50%9455.56%0841173748.42%933191148.82%675132450.98%170393617037591459722
19Reign64100001221663110000189-133000000147790.75022355700891231161918089289881567190747613412433.33%38684.21%0841173748.42%933191148.82%675132450.98%170393617037591459722
20Rocket302001001316-32020000068-21000010078-110.16713223500891231161990892898815671204428826116.67%14285.71%0841173748.42%933191148.82%675132450.98%170393617037591459722
21Senators422000001615111000000532312000001112-140.50016284410891231161912389289881567123364568700.00%200100.00%0841173748.42%933191148.82%675132450.98%170393617037591459722
22Sound Tigers2200000016511110000009361100000072541.0001625410089123116197889289881567452012477114.29%6266.67%0841173748.42%933191148.82%675132450.98%170393617037591459722
23Thunderbirds20000110101001000010067-11000001043130.7501017270089123116196689289881567692012448112.50%6183.33%0841173748.42%933191148.82%675132450.98%170393617037591459722
24Wolfpack220000001165110000005321100000063341.0001119300089123116196889289881567772428448337.50%14564.29%0841173748.42%933191148.82%675132450.98%170393617037591459722
25Wolves31000011141312100001011921000000134-150.833142438008912311619100892898815671114326686116.67%13561.54%0841173748.42%933191148.82%675132450.98%170393617037591459722
Total803628003763353161940161600143163168-54020120023317214824950.594335556891128912311619262589289881567258988272217782696022.30%3567479.21%9841173748.42%933191148.82%675132450.98%170393617037591459722
_Since Last GM Reset803628003763353161940161600143163168-54020120023317214824950.594335556891128912311619262589289881567258988272217782696022.30%3567479.21%9841173748.42%933191148.82%675132450.98%170393617037591459722
_Vs Conference482018002351941940237110002388102-1425137002121069214530.552194328522118912311619155589289881567158251747110511613421.12%2334281.97%6841173748.42%933191148.82%675132450.98%170393617037591459722
_Vs Division191060000366651933000032936-710730000037298230.6056611718300891231161960789289881567626221208401651421.54%1041387.50%3841173748.42%933191148.82%675132450.98%170393617037591459722

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
8095W133555689126252589882722177812
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
8036280376335316
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4016160143163168
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
4020120233172148
Derniers 10 matchs
WLOTWOTL SOWSOL
350110
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
2696022.30%3567479.21%9
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
892898815678912311619
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
841173748.42%933191148.82%675132450.98%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
170393617037591459722


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2021-11-305Phantoms7Marlies1BLR1Sommaire du match
4 - 2021-12-0316Marlies5Phantoms2AWSommaire du match
7 - 2021-12-0628Marlies6Senators2AWSommaire du match
8 - 2021-12-0736Marlies4Little Stars2AWSommaire du match
10 - 2021-12-0949Heat6Marlies2BLR1Sommaire du match
11 - 2021-12-1054Marlies4Phantoms3AWSommaire du match
15 - 2021-12-1473Marlies4Reign2AWR1Sommaire du match
16 - 2021-12-1578Reign3Marlies2BLXXSommaire du match
20 - 2021-12-1994Marlies2Heat3ALR1Sommaire du match
21 - 2021-12-20104Moose6Marlies3BLSommaire du match
23 - 2021-12-22110Marlies2Barracuda1AWSommaire du match
26 - 2021-12-25129Reign4Marlies2BLR1Sommaire du match
29 - 2021-12-28148Marlies6Icehogs8ALSommaire du match
31 - 2021-12-30155Heat3Marlies4BWR1Sommaire du match
35 - 2022-01-03178Little Stars3Marlies5BWSommaire du match
38 - 2022-01-06195Marlies3Senators5ALSommaire du match
39 - 2022-01-07202Griffins7Marlies3BLSommaire du match
42 - 2022-01-10218Marlies4Thunderbirds3AWXXSommaire du match
44 - 2022-01-12228Rampage5Marlies1BLSommaire du match
46 - 2022-01-14246Marlies7Griffins5AWSommaire du match
48 - 2022-01-16255Heat6Marlies5BLXXR1Sommaire du match
50 - 2022-01-18267Marlies4Devils3AWSommaire du match
53 - 2022-01-21280Condors5Marlies2BLSommaire du match
55 - 2022-01-23287Marlies3Condors5ALSommaire du match
57 - 2022-01-25301Marlies5Little Stars2AWSommaire du match
59 - 2022-01-27310Monsters2Marlies6BWSommaire du match
61 - 2022-01-29323Marlies5Monsters4AWXXSommaire du match
63 - 2022-01-31335Monsters6Marlies3BLSommaire du match
67 - 2022-02-04353Marlies6Icehogs0AWSommaire du match
68 - 2022-02-05361Devils7Marlies3BLSommaire du match
71 - 2022-02-08378Marlies6Rampage5AWXXSommaire du match
72 - 2022-02-09387Phantoms3Marlies2BLXXR1Sommaire du match
75 - 2022-02-12397Marlies4Admirals1AWSommaire du match
78 - 2022-02-15412Phantoms2Marlies7BWR1Sommaire du match
80 - 2022-02-17426Marlies3Crunch6ALSommaire du match
83 - 2022-02-20437Admirals1Marlies3BWSommaire du match
86 - 2022-02-23452Marlies4Reign1AWR1Sommaire du match
88 - 2022-02-25463Comets1Marlies6BWSommaire du match
90 - 2022-02-27470Marlies1Bears4ALSommaire du match
93 - 2022-03-02488Marlies3Penguins6ALSommaire du match
94 - 2022-03-03493Sound Tigers3Marlies9BWSommaire du match
99 - 2022-03-08518Griffins8Marlies4BLSommaire du match
101 - 2022-03-10529Marlies3Wolves4ALXXSommaire du match
103 - 2022-03-12540Punishers5Marlies3BLSommaire du match
105 - 2022-03-14545Marlies6Moose4AWSommaire du match
107 - 2022-03-16555Marlies7Rocket8ALXSommaire du match
110 - 2022-03-19572Icehogs4Marlies8BWSommaire du match
115 - 2022-03-24594Thunderbirds7Marlies6BLXSommaire du match
118 - 2022-03-27608Marlies6Wolfpack3AWSommaire du match
120 - 2022-03-29620Wolfpack3Marlies5BWSommaire du match
124 - 2022-04-02640Penguins7Marlies3BLSommaire du match
126 - 2022-04-04652Marlies3Condors4ALXXSommaire du match
128 - 2022-04-06667Admirals4Marlies5BWXXSommaire du match
130 - 2022-04-08674Marlies2Senators5ALSommaire du match
132 - 2022-04-10693Senators3Marlies5BWSommaire du match
136 - 2022-04-14712Marlies5Punishers3AWSommaire du match
137 - 2022-04-15720Barracuda7Marlies5BLSommaire du match
141 - 2022-04-19740Crunch3Marlies5BWSommaire du match
144 - 2022-04-22759Marlies5Eagles6ALSommaire du match
146 - 2022-04-24768Little Stars1Marlies4BWSommaire du match
148 - 2022-04-26778Marlies8Little Stars2AWSommaire du match
150 - 2022-04-28794Moose5Marlies6BWXXSommaire du match
151 - 2022-04-29797Marlies6Reign4AWR1Sommaire du match
156 - 2022-05-04821Crunch0Marlies3BWSommaire du match
157 - 2022-05-05833Marlies6Barracuda7ALXXSommaire du match
159 - 2022-05-07842Marlies4Heat3AWR1Sommaire du match
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
161 - 2022-05-09854Reign2Marlies4BWR1Sommaire du match
165 - 2022-05-13872Bears3Marlies4BWXXSommaire du match
166 - 2022-05-14880Marlies2Phantoms4ALR1Sommaire du match
169 - 2022-05-17896Marlies3Heat1AWR1Sommaire du match
171 - 2022-05-19903Bears4Marlies5BWSommaire du match
176 - 2022-05-24926Marlies7Sound Tigers2AWSommaire du match
177 - 2022-05-25930Wolves4Marlies5BWXXSommaire du match
179 - 2022-05-27941Marlies3Barracuda4ALXSommaire du match
181 - 2022-05-29955Rocket5Marlies4BLSommaire du match
185 - 2022-06-02978Rocket3Marlies2BLSommaire du match
187 - 2022-06-04983Marlies3Phantoms6ALR1Sommaire du match
191 - 2022-06-081001Marlies2Comets5ALSommaire du match
193 - 2022-06-101011Eagles5Marlies2BLSommaire du match
199 - 2022-06-161035Wolves5Marlies6BWSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance75,12136,796
Assistance PCT93.90%91.99%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 2798 - 93.26% 83,506$3,340,233$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
2,446,438$ 1,729,500$ 1,480,000$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
8,648$ 1,755,358$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 11,978$ 0$




Marlies Leaders statistiques (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Marlies Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Marlies Leaders statistiques (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA