Little Stars
GP: 7 | W: 3 | L: 4
GF: 29 | GA: 34 | PP%: 24.49% | PK%: 72.73%
GM : François Cloutier | Morale : 11 | Team Overall : 63
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Evgeny Kuznetsov (R)X100.006736827272777474676586667254484952710231975,000$
2Dana TyrellX100.007132807271817772737574696260533454710261825,000$
3Jesse JoensuuX100.007333737274707973657568646967582374690281800,000$
4Ilya Mikheyev (R)X100.007349796667747273746663586645465173660212500,000$
5Scott Kosmachuck (R)X100.007134747271607670557669635947454763660212550,000$
6Joakim Nygard (R)X100.005340797366595579706859598246495362650222500,000$
7Adam Tambellini (R)X100.005929766680726465667180456144434673650214600,000$
8Daniel O'regan (R)X100.006228766660737068707669535544434772640212400,000$
9Michael Mersch (R)X100.006535726972656569635574506954544257640232500,000$
10Sebastian Wannstrom (R)X100.006229686869676464707070485953533372630241350,000$
11Roman Horak (R)X100.005939756859676570726960475146462851620243300,000$
12Zach Budish (R)X100.006932756266626360647069536148463472620241500,000$
13Tyler Wotherspoon (R)X100.007026867473737269507258796253445170710222900,000$
14Patrick Wiercioch (R)X100.006733747465676969486959705253483472670251350,000$
15Eric Knodel (R)X100.007334686966776366426856685156533238660252500,000$
16Anton Cederholm (R)X100.006427826371666654447257784345425772660204750,000$
17Reece Willcox (R)X100.005929737262626963466552735944435072630212375,000$
18Tucker Poolman (R)X100.006633687364595663576548605646454772610224600,000$
Scratches
1Emile Poirier (R)X100.005128786771626460606177486945434920620213550,000$
2Daniil Tarasov (R)X100.006230676167615865696565545954543119610241300,000$
3Jason Dickinson (R)X100.006332726561606668706265507042426441610204500,000$
4Shane Gersich (R)X100.005935766752637272757462375141417320610191500,000$
5Justin Auger (R)X100.005626725462676256596969396645445020580213500,000$
6Radel Fazleev (R)X100.004631696248636160717362435041415620580191500,000$
7Rudolfs Balcers (R)X100.005633655248605249565162455640406920520182500,000$
8Jean-Christophe Beaudin (R)X100.004821595045515860586554364840407720520182500,000$
9Julien Nantel (R)X100.004740625152605551555560394741415220520191500,000$
10Yakov Trenin (R)X100.006030615359564959475149385440405920510182500,000$
11Ville Pokka (R)X100.006236686058626065336461565343435120590211350,000$
12Lawrence Pilut (R)X100.005934675257566261396156525045426420560202500,000$
TEAM AVERAGE100.00623273656465656560676455594746484862
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Dustin Tokarski100.00716781686577766967736764563372700
2Connor Knapp100.00725967747568636373667252523072680
Scratches
1Peter Delmas100.00636773687467667264636748483320670
TEAM AVERAGE100.0069647470717168686867695552325568
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Claude Julien82837474596155CAN5121,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jesse JoensuuLittle Stars (Dal)LW74812-680792862114.29%415722.482357410000141029.41%1774001.5300000020
2Ilya MikheyevLittle Stars (Dal)RW75510-2201092241722.73%612317.60336935000000166.67%664001.6200000101
3Dana TyrellLittle Stars (Dal)C76410-60013193141519.35%216223.193259410000191145.98%26154001.2300000200
4Evgeny KuznetsovLittle Stars (Dal)C7178-320816286103.57%415121.67055637000060041.51%5363001.0500000000
5Tyler WotherspoonLittle Stars (Dal)D7167-4175101216576.25%1419327.70112646000119000.00%064000.7200001000
6Daniel O'reganLittle Stars (Dal)C7336-220313107330.00%011316.24112222000071052.78%7222001.0600000000
7Joakim NygardLittle Stars (Dal)LW7134-220131911105.26%28612.3900002000060050.00%441000.9200000000
8Roman HorakLittle Stars (Dal)C7123-20073102310.00%37110.2500000000020055.00%4002000.8400000000
9Adam TambelliniLittle Stars (Dal)LW7213-2801161121018.18%012317.66112535000000033.33%392000.4900000000
10Eric KnodelLittle Stars (Dal)D7123-22011673214.29%614520.80101429000011000.00%025000.4100000000
11Anton CederholmLittle Stars (Dal)D7033-100795110.00%814520.75000029000012000.00%026000.4100000010
12Patrick WierciochLittle Stars (Dal)D7033-56011811510.00%2019928.47033246000018000.00%038000.3000000000
13Sebastian WannstromLittle Stars (Dal)RW7202-20010482425.00%07410.7100000000000075.00%401000.5300000000
14Scott KosmachuckLittle Stars (Dal)RW7112-4208313437.69%2699.86011015000060050.00%610100.5800000000
15Michael MerschLittle Stars (Dal)LW7101-1003311439.09%2446.4000001000000050.00%231000.4500000000
16Zach BudishLittle Stars (Dal)RW7000-140346230.00%0466.570000000000000.00%011000.0000000000
17Reece WillcoxLittle Stars (Dal)D7000-620690100.00%107711.140000000002000.00%002000.0000000000
18Tucker PoolmanLittle Stars (Dal)D7000-420973110.00%77811.180000000000000.00%014000.0000000000
Team Total or Average126294877-555951381432397011412.13%90206516.391220325038500011303247.22%4685854100.7500001331
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Connor KnappLittle Stars (Dal)52200.8505.24229002013358000.000052001
2Dustin TokarskiLittle Stars (Dal)41200.8704.44189001410852100.000025000
Team Total or Average93400.8594.884180034241110100.000077001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam TambelliniLittle Stars (Dal)LW211994-01-01Yes185 Lbs6 ft4NoNoNo4Pro & Farm600,000$0$0$No600,000$600,000$600,000$
Anton CederholmLittle Stars (Dal)D201995-01-01Yes185 Lbs6 ft2NoNoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$
Connor KnappLittle Stars (Dal)G251990-01-01No206 Lbs6 ft6NoNoNo1Pro & Farm300,000$0$0$No
Dana TyrellLittle Stars (Dal)C261989-01-01No185 Lbs5 ft10NoNoNo1Pro & Farm825,000$0$0$No
Daniel O'reganLittle Stars (Dal)C211994-01-01Yes169 Lbs5 ft9NoNoNo2Pro & Farm400,000$0$0$No400,000$
Daniil TarasovLittle Stars (Dal)RW241991-01-01Yes185 Lbs6 ft0NoNoNo1Pro & Farm300,000$0$0$No
Dustin TokarskiLittle Stars (Dal)G261989-01-01No198 Lbs5 ft11NoNoNo1Pro & Farm800,000$0$0$No
Emile PoirierLittle Stars (Dal)LW211994-01-01Yes185 Lbs6 ft1NoNoNo3Pro & Farm550,000$0$0$No550,000$550,000$
Eric KnodelLittle Stars (Dal)D251990-01-01Yes216 Lbs6 ft6NoNoNo2Pro & Farm500,000$0$0$No500,000$
Evgeny KuznetsovLittle Stars (Dal)C231992-01-01Yes172 Lbs6 ft0NoNoNo1Pro & Farm975,000$0$0$No
Ilya MikheyevLittle Stars (Dal)RW211994-01-01Yes195 Lbs6 ft3NoNoNo2Pro & Farm500,000$0$0$No500,000$
Jason DickinsonLittle Stars (Dal)C201995-01-01Yes185 Lbs6 ft2NoNoNo4Pro & Farm500,000$0$0$No500,000$500,000$500,000$
Jean-Christophe BeaudinLittle Stars (Dal)C181997-01-01Yes196 Lbs6 ft1NoNoNo2Pro & Farm500,000$0$0$No500,000$
Jesse JoensuuLittle Stars (Dal)LW281987-01-01No209 Lbs6 ft4NoNoNo1Pro & Farm800,000$0$0$No
Joakim NygardLittle Stars (Dal)LW221993-01-01Yes179 Lbs6 ft0NoNoNo2Pro & Farm500,000$0$0$No500,000$
Julien NantelLittle Stars (Dal)LW191996-01-01Yes195 Lbs6 ft0NoNoNo1Pro & Farm500,000$0$0$No
Justin AugerLittle Stars (Dal)RW211994-01-01Yes185 Lbs6 ft7NoNoNo3Pro & Farm500,000$0$0$No500,000$500,000$
Lawrence PilutLittle Stars (Dal)D201995-01-01Yes194 Lbs5 ft11NoNoNo2Pro & Farm500,000$0$0$No500,000$
Michael MerschLittle Stars (Dal)LW231992-01-01Yes218 Lbs6 ft2NoNoNo2Pro & Farm500,000$0$0$No500,000$
Patrick WierciochLittle Stars (Dal)D251990-01-01Yes192 Lbs6 ft4NoNoNo1Pro & Farm350,000$0$0$No
Peter DelmasLittle Stars (Dal)G251990-01-01No169 Lbs6 ft2NoNoNo1Pro & Farm575,000$0$0$No
Radel FazleevLittle Stars (Dal)C191996-01-01Yes192 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Reece WillcoxLittle Stars (Dal)D211994-01-01Yes184 Lbs6 ft3NoNoNo2Pro & Farm375,000$0$0$No375,000$
Roman HorakLittle Stars (Dal)C241991-01-01Yes170 Lbs6 ft0NoNoNo3Pro & Farm300,000$0$0$No300,000$300,000$
Rudolfs BalcersLittle Stars (Dal)LW181997-01-01Yes180 Lbs5 ft11NoNoNo2Pro & Farm500,000$0$0$No500,000$
Scott KosmachuckLittle Stars (Dal)RW211994-01-01Yes185 Lbs5 ft11NoNoNo2Pro & Farm550,000$0$0$No550,000$
Sebastian WannstromLittle Stars (Dal)RW241991-01-01Yes180 Lbs6 ft1NoNoNo1Pro & Farm350,000$0$0$No
Shane GersichLittle Stars (Dal)LW191996-01-01Yes175 Lbs5 ft11NoNoNo1Pro & Farm500,000$0$0$No
Tucker PoolmanLittle Stars (Dal)D221993-01-01Yes185 Lbs6 ft2NoNoNo4Pro & Farm600,000$0$0$No600,000$600,000$600,000$
Tyler WotherspoonLittle Stars (Dal)D221993-01-01Yes210 Lbs6 ft2NoNoNo2Pro & Farm900,000$0$0$No975,000$
Ville PokkaLittle Stars (Dal)D211994-01-01Yes205 Lbs5 ft11NoNoNo1Pro & Farm350,000$0$0$No
Yakov TreninLittle Stars (Dal)C181997-01-01Yes201 Lbs6 ft2NoNoNo2Pro & Farm500,000$0$0$No500,000$
Zach BudishLittle Stars (Dal)RW241991-01-01Yes223 Lbs6 ft3NoNoNo1Pro & Farm500,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3322.03191 Lbs6 ft11.91534,848$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jesse JoensuuDana TyrellEvgeny Kuznetsov40122
2Adam TambelliniDaniel O'reganIlya Mikheyev30122
3Joakim NygardRoman HorakSebastian Wannstrom20122
4Michael MerschEvgeny KuznetsovZach Budish10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler WotherspoonPatrick Wiercioch40122
2Anton CederholmEric Knodel30122
3Tucker PoolmanReece Willcox20122
4Tyler WotherspoonPatrick Wiercioch10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jesse JoensuuDana TyrellEvgeny Kuznetsov60014
2Adam TambelliniDaniel O'reganIlya Mikheyev40023
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler WotherspoonPatrick Wiercioch60014
2Anton CederholmEric Knodel40014
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Dana TyrellJesse Joensuu60032
2Evgeny KuznetsovScott Kosmachuck40032
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler WotherspoonPatrick Wiercioch60032
2Anton CederholmEric Knodel40032
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Dana Tyrell60032Tyler WotherspoonPatrick Wiercioch60032
2Evgeny Kuznetsov40032Anton CederholmEric Knodel40032
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Dana TyrellJesse Joensuu60023
2Evgeny KuznetsovScott Kosmachuck40023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler WotherspoonPatrick Wiercioch60023
2Anton CederholmEric Knodel40023
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jesse JoensuuDana TyrellScott KosmachuckTyler WotherspoonPatrick Wiercioch
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jesse JoensuuDana TyrellScott KosmachuckTyler WotherspoonPatrick Wiercioch
Extra Forwards
Normal PowerPlayPenalty Kill
Evgeny Kuznetsov, Adam Tambellini, Daniel O'reganJoakim Nygard, Michael MerschDaniel O'regan
Extra Defensemen
Normal PowerPlayPenalty Kill
Tucker Poolman, Anton Cederholm, Eric KnodelTucker PoolmanAnton Cederholm, Eric Knodel
Penalty Shots
Dana Tyrell, Evgeny Kuznetsov, Jesse Joensuu, Scott Kosmachuck, Adam Tambellini
Goalie
#1 : Connor Knapp, #2 : Dustin Tokarski


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Rampage734000002934-53210000010100413000001924-560.4292948770011513023977907202419059138491224.49%22672.73%09419049.47%8316749.70%4411139.64%146791506712263
Total734000002934-53210000010100413000001924-560.4292948770011513023977907202419059138491224.49%22672.73%09419049.47%8316749.70%4411139.64%146791506712263
_Since Last GM Reset734000002934-53210000010100413000001924-560.4292948770011513023977907202419059138491224.49%22672.73%09419049.47%8316749.70%4411139.64%146791506712263
_Vs Conference734000002934-53210000010100413000001924-560.4292948770011513023977907202419059138491224.49%22672.73%09419049.47%8316749.70%4411139.64%146791506712263

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
76L1294877239241905913800
All Games
GPWLOTWOTL SOWSOLGFGA
73400002934
Home Games
GPWLOTWOTL SOWSOLGFGA
32100001010
Visitor Games
GPWLOTWOTL SOWSOLGFGA
41300001924
Last 10 Games
WLOTWOTL SOWSOL
340000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
491224.49%22672.73%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
7790720115130
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
9419049.47%8316749.70%4411139.64%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
146791506712263


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2020-10-096Little Stars3Rampage7LR2BoxScore
2 - 2020-10-1014Little Stars4Rampage5LBoxScore
3 - 2020-10-1122Rampage5Little Stars1LR2BoxScore
4 - 2020-10-1230Rampage2Little Stars3WBoxScore
5 - 2020-10-1338Little Stars7Rampage5WR2BoxScore
6 - 2020-10-1446Rampage3Little Stars6WBoxScore
7 - 2020-10-1554Little Stars5Rampage7LR2BoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price4020
Attendance4,5972,595
Attendance PCT76.62%86.50%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
37 2397 - 79.91% 82,523$247,569$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,765,000$ 2,642,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT