Votre version du STHS est obsolète! Veuillez mettre à jour votre version du STHS!
Connexion

Wranglers
GP: 19 | W: 16 | L: 3
GF: 88 | GA: 63 | PP%: 26.58% | PK%: 78.87%
DG: Steve Landry | Morale : 99 | Moyenne d’équipe : 64
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Bears
12-13-0, 24pts
3
FINAL
5 Wranglers
16-3-0, 32pts
Team Stats
L4SéquenceW5
5-6-0Fiche domicile7-2-0
7-7-0Fiche domicile9-1-0
4-4-2Derniers 10 matchs10-0-0
3.28Buts par match 4.63
3.60Buts contre par match 3.32
17.20%Pourcentage en avantage numérique26.58%
76.47%Pourcentage en désavantage numérique78.87%
Bears
12-13-0, 24pts
2
FINAL
5 Wranglers
16-3-0, 32pts
Team Stats
L4SéquenceW5
5-6-0Fiche domicile7-2-0
7-7-0Fiche domicile9-1-0
4-4-2Derniers 10 matchs10-0-0
3.28Buts par match 4.63
3.60Buts contre par match 3.32
17.20%Pourcentage en avantage numérique26.58%
76.47%Pourcentage en désavantage numérique78.87%
Meneurs d'équipe
Buts
Evgeny Svechnikov
19
Passes
Peter Cehlarik
25
Points
Peter Cehlarik
36
Plus/Moins
Evgeny Svechnikov
11
Victoires
Michael Hutchinson
16
Pourcentage d’arrêts
Michael Hutchinson
0.904

Statistiques d’équipe
Buts pour
88
4.63 GFG
Tirs pour
653
34.37 Avg
Pourcentage en avantage numérique
26.6%
21 GF
Début de zone offensive
37.3%
Buts contre
63
3.32 GAA
Tirs contre
607
31.95 Avg
Pourcentage en désavantage numérique
78.9%%
15 GA
Début de la zone défensive
36.4%
Informations de l'équipe

Directeur généralSteve Landry
EntraîneurCraig MacTavish
DivisionFritz-Kraatz
ConférenceRobert-Lebel
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance3,000
Billets de saison300


Informations de la formation

Équipe Pro32
Équipe Mineure22
Limite contact 54 / 250
Espoirs0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Evgeny Svechnikov (R)X100.007232887287787775787190577160505382740221975,000$
2Peter Cehlarik (R)X100.006944807368747374757672617252484876700232850,000$
3Barclay GoodrowX100.007929756973707171676971726654523561690252900,000$
4Nico Sturm (R)X100.006629877278787765727559697051504584690233750,000$
5Ryan SpoonerX100.006431767473727768767966636555513384680261900,000$
6Jesper Bratt (R)X100.006546747370757171747270617347446484680203750,000$
7Eric Karlsson (R)X100.007833747078707065656773595650503884660242750,000$
8Ryan Donato (R)X100.007438756480657166746775496744444784660223800,000$
9Vladislav Kamenev (R)X100.007131735172666869605975577344444882630223700,000$
10Tage Thompson (R)X100.005932846965786556657254625946455977620213700,000$
11Vitali Kravtsov (R)X100.006943726262587063616065536442416776610192500,000$
12Rasmus Andersson (R)X100.0075378381727376834681687458634854727402211,500,000$
13Frank CorradoX100.007140757277747671596961716062533672700252850,000$
14Dominik Masin (R)X100.006831877071697257356346795353464846670222650,000$
15Trevor Carrick (R)X100.006238758166667576427555674449503233670243700,000$
16Erik Brannstrom (R)X100.005529727455537485418362724046427476660191500,000$
17Petteri LindbohmX100.006039756467677071466871695749543464660253750,000$
18Christian Jaros (R)X100.006729776562616265367150725445464373650222650,000$
Rayé
1Taylor Raddysh (R)X100.005946806470706070696267586743435983640201500,000$
2Ivan Chekhovich (R)X100.006325754876555961586077376541416330590191500,000$
3Radim Zohorna (R)X100.005739746170736260555669445747454830590223600,000$
4Skyler Brind'Amour (R)X100.004433765154695647545554555441416230530191500,000$
5Demetrios Koumontzis (R)X100.004128605549545055676258304740405827520182500,000$
6Filip Hallander (R)X100.004529675847494356445948394440406827500182500,000$
7John GilmourX100.007034776863766975517257665848503030670251800,000$
8Brandon Hickey (R)X100.006627846364646455366947785348453874650221600,000$
9Darren Raddysh (R)X100.006325926560696348456737663950464830620221500,000$
10Tim Berni (R)X100.005827574051495557185750343140406027480182500,000$
MOYENNE D’ÉQUIPE100.00643477656767676656686260584846506164
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Michael Hutchinson98.00707975757474747678717371662487740282995,000$
2Vitek Vanecek100.00637067606173775459766246464754650221600,000$
Rayé
1Collin Delia100.00725765726958515863556742425436600243700,000$
2Joel Hofer (R)100.00665263746950435861537240406956570182500,000$
MOYENNE D’ÉQUIPE99.5068656870686461626564695049495864
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Craig MacTavish78756975766752CAN563800,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Peter CehlarikWranglers (Cal)LW191125369160372291423512.09%1143522.923101312620111541151.52%331910001.6500000252
2Nico SturmWranglers (Cal)C191220321060332534142535.29%940021.07210125622024202148.71%61847101.6000000252
3Evgeny SvechnikovWranglers (Cal)RW19199281120363299274519.19%844323.35821014631014605051.68%149166101.2600000415
4Erik BrannstromWranglers (Cal)D199112010120121844102020.45%928915.25224540000022016.67%692001.3800000220
5Rasmus AnderssonWranglers (Cal)D193172084025437127234.23%2950526.601341268022159100%01711000.7900000201
6Ryan SpoonerWranglers (Cal)C1951217780363140112412.50%1131516.580336470000140055.41%22263001.0800000001
7Frank CorradoWranglers (Cal)D19411158260294127101314.81%3548825.69257665000046110%0216000.6100000100
8Jesper BrattWranglers (Cal)LW195611660301839122612.82%429215.37101847000000056.25%1663000.7500000100
9Eric KarlssonWranglers (Cal)LW19371042034154413356.82%323912.6100012011028000%332000.8400000000
10Petteri LindbohmWranglers (Cal)D19281071601525221089.09%1635218.5300001000139100%095000.5700000000
11Ryan DonatoWranglers (Cal)C192573802382311258.70%422011.60000010001111053.40%10322000.6400000000
12Barclay GoodrowWranglers (Cal)RW1333634016192651111.54%618614.381014210111140245.45%1115100.6400000000
13Vladislav KamenevWranglers (Cal)C19505-3601971771429.41%31507.9200000000001039.34%6161000.6600000000
14Dominik MasinWranglers (Cal)D18044740112713760%1435219.5800005000037000%0213000.2300000000
15Taylor RaddyshWranglers (Cal)RW14224-14099276167.41%415010.7300003000001050.00%431000.5300000001
16Brandon HickeyWranglers (Cal)D1412332061345525.00%420814.89101133000015000%015000.2900000000
17Trevor CarrickWranglers (Cal)D61230805732233.33%58814.7401101101102000%033000.6800000010
18Vitali KravtsovWranglers (Cal)LW19123-18018511379.09%11598.4100000000140075.00%440000.3800000000
19Christian JarosWranglers (Cal)D13011220131412710%816012.3700002000006000%010000.1200000000
20Tage ThompsonWranglers (Cal)RW19011-3006175360%31487.840000000000000%144000.1300000000
21Skyler Brind'AmourWranglers (Cal)C1000000000000%011.030000000001000%10000000000000
22John GilmourWranglers (Cal)D1000100101010%088.200000000000000%00000000000000
23Darren RaddyshWranglers (Cal)D1000000000000%033.470000000002000%00000000000000
24Ivan ChekhovichWranglers (Cal)LW1000000000000%000.700000000000000%00000000000000
25Radim ZohornaWranglers (Cal)LW1000000000000%000.100000000000000%00000000000000
Statistiques d’équipe totales ou en moyenne3498814823691144041439665323234813.48%187560116.05213657745623691442316550.08%123211899300.8400000141412
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HutchinsonWranglers (Cal)1816200.9043.06106000545622631000181013
2Vitek VanecekWranglers (Cal)20100.8006.598200945200000118000
Statistiques d’équipe totales ou en moyenne2016300.8963.31114300636072831001919013


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Salaire restantPlafond salarial Non Activé Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Non-échange Année 2Non-échange Année 3Non-échange Année 4Non-échange Année 5Non-échange Année 6Non-échange Année 7Non-échange Année 8Non-échange Année 9Non-échange Année 10Lien
Barclay GoodrowWranglers (Cal)RW251993-01-01No215 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm900,000$0$0$No900,000$--------No--------
Brandon HickeyWranglers (Cal)D221996-01-01Yes201 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm600,000$0$0$No------------------
Christian JarosWranglers (Cal)D221996-01-01Yes222 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm650,000$0$0$No700,000$--------No--------
Collin DeliaWranglers (Cal)G241994-01-01No207 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm700,000$0$0$No700,000$700,000$-------NoNo-------
Darren RaddyshWranglers (Cal)D221996-01-01Yes200 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No------------------
Demetrios KoumontzisWranglers (Cal)LW182000-01-01Yes190 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm500,000$0$0$No500,000$--------No--------Lien
Dominik MasinWranglers (Cal)D221996-01-01Yes196 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm650,000$0$0$No700,000$--------No--------
Eric KarlssonWranglers (Cal)LW241994-01-01Yes161 Lbs5 ft11NoNoN/ANoNo2FalseFalsePro & Farm750,000$0$0$No850,000$--------No--------
Erik BrannstromWranglers (Cal)D191999-01-01Yes185 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No------------------
Evgeny SvechnikovWranglers (Cal)RW221996-01-01Yes208 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm975,000$0$0$No------------------
Filip HallanderWranglers (Cal)C182000-01-01Yes190 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm500,000$0$0$No500,000$--------No--------Lien
Frank CorradoWranglers (Cal)D251993-01-01No195 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm850,000$0$0$No900,000$--------No--------
Ivan ChekhovichWranglers (Cal)LW191999-01-01Yes187 Lbs5 ft10NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No------------------
Jesper BrattWranglers (Cal)LW201998-01-01Yes185 Lbs5 ft10NoNoN/ANoNo3FalseFalsePro & Farm750,000$0$0$No900,000$950,000$-------NoNo-------
Joel HoferWranglers (Cal)G182000-01-01Yes179 Lbs6 ft5NoNoN/ANoNo2FalseFalsePro & Farm500,000$0$0$No500,000$--------No--------Lien
John GilmourWranglers (Cal)D251993-01-01No185 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm800,000$0$0$No------------------
Michael HutchinsonWranglers (Cal)G281990-01-01No202 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm995,000$0$0$No995,000$--------No--------
Nico SturmWranglers (Cal)C231995-01-01Yes207 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm750,000$0$0$No900,000$950,000$-------NoNo-------
Peter CehlarikWranglers (Cal)LW231995-01-01Yes185 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm850,000$0$0$No900,000$--------No--------
Petteri LindbohmWranglers (Cal)D251993-01-01No209 Lbs6 ft3NoNoN/ANoNo3FalseFalsePro & Farm750,000$0$0$No800,000$850,000$-------NoNo-------
Radim ZohornaWranglers (Cal)LW221996-01-01Yes229 Lbs6 ft6NoNoN/ANoNo3FalseFalsePro & Farm600,000$0$0$No650,000$700,000$-------NoNo-------
Rasmus AnderssonWranglers (Cal)D221996-01-01Yes214 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm1,500,000$0$0$No------------------
Ryan DonatoWranglers (Cal)C221996-01-01Yes193 Lbs6 ft0NoNoN/ANoNo3FalseFalsePro & Farm800,000$0$0$No850,000$900,000$-------NoNo-------
Ryan SpoonerWranglers (Cal)C261992-01-01No181 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm900,000$0$0$No------------------
Skyler Brind'AmourWranglers (Cal)C191999-01-01Yes185 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No------------------
Tage ThompsonWranglers (Cal)RW211997-01-01Yes218 Lbs6 ft7NoNoN/ANoNo3FalseFalsePro & Farm700,000$0$0$No800,000$900,000$-------NoNo-------
Taylor RaddyshWranglers (Cal)RW201998-01-01Yes198 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm500,000$0$0$No------------------
Tim BerniWranglers (Cal)D182000-01-01Yes181 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$0$0$No500,000$--------No--------Lien
Trevor CarrickWranglers (Cal)D241994-01-01Yes171 Lbs6 ft1NoNoN/ANoNo3FalseFalsePro & Farm700,000$0$0$No750,000$825,000$-------NoNo-------
Vitali KravtsovWranglers (Cal)LW191999-01-01Yes186 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm500,000$0$0$No500,000$--------No--------Lien
Vitek VanecekWranglers (Cal)G221996-01-01No190 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm600,000$0$0$No------------------
Vladislav KamenevWranglers (Cal)C221996-01-01Yes194 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm700,000$0$0$No800,000$825,000$-------NoNo-------
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
3221.91195 Lbs6 ft11.94702,188$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Peter CehlarikNico SturmEvgeny Svechnikov40122
2Jesper BrattRyan SpoonerErik Brannstrom30122
3Eric KarlssonRyan DonatoBarclay Goodrow20122
4Vitali KravtsovVladislav KamenevTage Thompson10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Rasmus AnderssonFrank Corrado40122
2Petteri LindbohmDominik Masin30122
3Trevor CarrickChristian Jaros20122
4Petteri LindbohmDominik Masin10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Peter CehlarikNico SturmEvgeny Svechnikov60122
2Jesper BrattRyan SpoonerErik Brannstrom40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Rasmus AnderssonFrank Corrado60122
2Trevor CarrickChristian Jaros40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Evgeny SvechnikovPeter Cehlarik60122
2Nico SturmEric Karlsson40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Rasmus AnderssonFrank Corrado60122
2Petteri LindbohmDominik Masin40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Evgeny Svechnikov60122Rasmus AnderssonFrank Corrado60122
2Peter Cehlarik40122Petteri LindbohmDominik Masin40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Evgeny SvechnikovPeter Cehlarik60122
2Nico SturmEric Karlsson40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Rasmus AnderssonFrank Corrado60122
2Trevor CarrickErik Brannstrom40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Peter CehlarikNico SturmEvgeny SvechnikovRasmus AnderssonFrank Corrado
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Peter CehlarikNico SturmEvgeny SvechnikovRasmus AnderssonFrank Corrado
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Ryan Spooner, Peter Cehlarik, Nico SturmJesper Bratt, Evgeny SvechnikovRyan Spooner
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Dominik Masin, Erik Brannstrom, Petteri LindbohmErik BrannstromPetteri Lindbohm, Dominik Masin
Tirs de pénalité
Evgeny Svechnikov, Peter Cehlarik, Jesper Bratt, Nico Sturm, Vitali Kravtsov
Gardien
#1 : Michael Hutchinson, #2 : Vitek Vanecek
Lignes d’attaque personnalisées en prolongation
Evgeny Svechnikov, Peter Cehlarik, Vitali Kravtsov, Nico Sturm, Jesper Bratt, Ryan Spooner, Ryan Spooner, Eric Karlsson, Ryan Donato, Barclay Goodrow, Vladislav Kamenev
Lignes de défense personnalisées en prolongation
Rasmus Andersson, Frank Corrado, Petteri Lindbohm, Erik Brannstrom, Dominik Masin


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda541000002318521100000710-333000000168880.8002339620028312721622182561763174483811127622.22%18477.78%223045950.11%23344951.89%15432447.53%414236390177340169
2Bears4400000018992200000010552200000084481.000182745002831272132218256176312544281049333.33%14285.71%023045950.11%23344951.89%15432447.53%414236390177340169
3Griffins440000002115622000000107322000000118381.000213859002831272160218256176312336267915533.33%13284.62%123045950.11%23344951.89%15432447.53%414236390177340169
4Icehogs64200000262153210000013112321000001310380.6672644700028312721992182561763185595212028725.00%26773.08%023045950.11%23344951.89%15432447.53%414236390177340169
Total19163000008863259720000040337109100000483018320.842881482360028312726532182561763607187144414792126.58%711578.87%323045950.11%23344951.89%15432447.53%414236390177340169
_Since Last GM Reset19163000008863259720000040337109100000483018320.842881482360028312726532182561763607187144414792126.58%711578.87%323045950.11%23344951.89%15432447.53%414236390177340169
_Vs Conference1512300000705416752000003028287100000402614240.800701211910028312725212182561763482143116310701825.71%571377.19%323045950.11%23344951.89%15432447.53%414236390177340169

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
1932W58814823665360718714441400
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
1916300008863
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
97200004033
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
109100004830
Derniers 10 matchs
WLOTWOTL SOWSOL
802000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
792126.58%711578.87%3
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
21825617632831272
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
23045950.11%23344951.89%15432447.53%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
414236390177340169


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
14Wranglers4Barracuda3WSommaire du match
212Wranglers4Barracuda1WSommaire du match
320Barracuda6Wranglers1LSommaire du match
428Barracuda4Wranglers6WSommaire du match
536Wranglers8Barracuda4WSommaire du match
858Wranglers3Icehogs8LSommaire du match
962Wranglers5Icehogs1WSommaire du match
1066Icehogs4Wranglers3LSommaire du match
1170Icehogs2Wranglers4WSommaire du match
1274Wranglers5Icehogs1WSommaire du match
1378Icehogs5Wranglers6WXSommaire du match
1585Wranglers6Griffins5WSommaire du match
1687Wranglers5Griffins3WSommaire du match
1789Griffins3Wranglers4WXSommaire du match
1891Griffins4Wranglers6WSommaire du match
2299Wranglers5Bears3WSommaire du match
23100Wranglers3Bears1WSommaire du match
24101Bears3Wranglers5WSommaire du match
25102Bears2Wranglers5WSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets7040
Assistance18,0009,000
Assistance PCT100.00%100.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
31 3000 - 100.00% 189,000$1,701,000$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
0$ 2,247,000$ 2,074,500$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 0$ 0$




Wranglers Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Wranglers Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Wranglers Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA